\[ \renewcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\id}{\mathbb{I}} \newcommand{\K}{\mathbb{K}} \newcommand{\rot}{\sf{rot}} \newcommand{\ddt}{\frac{\mathrm{d}}{\mathrm{d}t}} \]
Tom Ranner
Preprint available arxiv:1904.01325. Slides available at tomranner.org/enumath2019
Any (smooth) frame \((\vec{\tau}, \vec{e}_1, \vec{e}_2)\) defines three scalar fields \(\alpha, \beta\) and \(\gamma\) which satisfy:
\[ \frac{1}{|\vec{x}_u|} \vec{\tau}_u = \alpha \vec{e}^1 + \beta \vec{e}^2, \\ \frac{1}{|\vec{x}_u|} \vec{e}^1_u = -\alpha \vec{\tau} + \gamma \vec{e}^2, \\ \frac{1}{|\vec{x}_u|} \vec{e}^2_u = -\beta \tau - \gamma \vec{e}^1. \]
This corresponds to (vector) curvature \(\vec{\kappa} = \alpha \vec{e}^1 + \beta \vec{e}^2\) and twist \(\gamma\).
We denote by \(\vec{\Omega} = \vec{\tau} \times \vec{\kappa} + \gamma \vec{\tau}\) (Darboux vector). Then \[ \frac{1}{|\vec{x}_u|} \vec{e}^j_u = \vec{\Omega} \times \vec{e}^j. \]
We can do similar for time derivatives. Let \(\vec{\omega} = \vec{\tau} \times \vec{\tau}_t + m \vec{\tau}\) then we have \[ \vec{e}^j_t = \vec{\omega} \times \vec{e}^j. \]
Unknowns
Equations
Equations look like fourth order parabolic equation for \(x\), with local length constraint, coupled to second order parabolic for \(\gamma\).
We split the domain \((0,1)\) into equal elements of length \(h\) and choose a time step \(\Delta t\)
We use a combination of piecewise linear finite elements \(V_h\) and piecewise constant functions \(Q_h\).
Use mass lumping for vertex-wise updates.
For a discrete parametrisation \(\vec{x}_h \in V_h^3\), we introduce two different tangent vector fields.
\(\vec{\tau}_h \in Q_h^3\) as the piecewise constant normalised derivative of \(\vec{x}_h\): \(\vec{\tau}_h = {\vec{x}_{h,u}} / { |\vec{x}_{h,u}| }\).
\(\tilde{\vec{\tau}}_h \in V_h^3\) with vertex values given by \[ \tilde{\vec{\tau}}_h( u_j, \cdot ) = \frac{ \vec{\tau}_{h}( u_i^-, \cdot) + \vec{\tau}_h( u_i^+, \cdot ) }{| \vec{\tau}_{h}( u_i^-, \cdot) + \vec{\tau}_h( u_i^+, \cdot ) |} \quad \mbox{ for } i = 1, \ldots, N, \]
where \(\vec\tau_h( u_i^\pm, \cdot )\) is \(\vec{\tau}_h\) evaluated on the left (or right) element to the vertex \(u_i\).
Variable | Name | Discrete variable | Space |
---|---|---|---|
\(\vec{x}\) | position | \(\vec{x}_h\) | \(V_h^3\) |
\(p\) | line tension | \(p_h\) | \(Q_h\) |
\(\vec{\kappa}\) | vector curvature | \(\vec{\kappa}_h\) | \(V_h^3\) |
\(\gamma\) | twist | \(\gamma_h\) | \(Q_h\) |
\(\vec{y}\) | bending moment | \(\vec{y}_h\) | \(V_h^3\) |
\(z\) | twisting moment | \(z_h\) | \(Q_h\) |
\(m\) | tangential angular momentum | \(m_h\) | \(V_h\) |
\(\vec{e}_1, \vec{e}_2\) | the frame | \(\vec{e}_{1,h}, \vec{e}_{2,h}\) | \(V_h^3\) |
Given preferred curvatures \(\alpha^0, \beta^0\), a preferred twist \(\gamma_0\), and initial conditions for \(\vec{x}_h, \gamma_h\) (which imply compatible initial conditions for \(\vec{w}_h\), \(\vec{e}_{1,h}\) and \(\vec{e}_{2,h}\) up to a fixed rotation), for \(t \in [0,T]\), find \(\vec{x}_h( \cdot, t) \in V_h^3, \vec{y}_h( \cdot, t) \in V_{h,0}^3, \vec{w}_h( \cdot, t ) \in V_{h,0}^3 + \vec{w}_b(\cdot,t)\),\(m_h( \cdot, t ) \in V_h, z_h( \cdot, t ), \gamma_h( \cdot, t), p_h( \cdot, t ) \in Q_h\), \(\vec{e}_{h,1}( \cdot, t ), \vec{e}_{h,2}( \cdot, t ) \in V_h^3\) such that
\[ \begin{align} \label{eq:fem-x} \int_0^1 \K \vec{x}_{h,t} \cdot \vec{\phi}_h | \vec{x}_{h,u} | - \int_0^1 p_h \vec\tau_h \cdot \vec{\phi}_{h,u} \qquad\qquad\qquad\qquad\qquad\qquad & \\ \nonumber - \int_0^1 \bigl( ( \id - \vec\tau_h \otimes \vec\tau_h ) \frac{\vec{y}_{h,u}}{| \vec{x}_{h,u} |} + z_h \vec\tau_h \times \vec{w}_h \bigr) \cdot \vec{\phi}_{h,u} & = 0 \\ % \label{eq:fem-y} \int_0^1 \Bigl( \bigl( \vec{y}_h - A ( \vec{w}_h - \alpha^0 \vec{e}_{1,h} - \beta^0 \vec{e}_{2,h} ) \qquad\qquad\qquad\qquad\qquad\qquad & \\ \nonumber - B ( ( \id - \tilde{\vec\tau}_h \otimes \tilde{\vec\tau}_h ) \vec{w}_{h,t} - m_h \tilde{\vec\tau}_h \times \vec{w}_h ) \bigr) \cdot \vec{\psi}_h \Bigr)_h | \vec{x}_{h,u} | & = 0 \\ % \label{eq:fem-w} \int_0^1 ( \vec{w}_h \cdot \vec\psi_h )_h | \vec{x}_{h,u} | + \frac{\vec{x}_{h,u}}{ | \vec{x}_{h,u} | } \cdot \vec\psi_{h,u} & = 0 \end{align} \] for all \(\vec\phi_h \in V_h^3\), \(\vec\psi_h \in V_{h,0}^3\), \[ \begin{align} \label{eq:fem-gamma} \int_0^1 - ( K^\rot m_h v_h )_h | \vec{x}_{h,u} | - \int_0^1 z_h v_{h,u} + \int_0^1 ( \vec{y}_h \cdot ( \tilde{\vec\tau}_h \times \vec{w}_h ) v_h )_h | \vec{x}_{h,u} | & = 0, \\ % \label{eq:fem-z} \int_0^1 ( z_h - C ( \gamma_h - \gamma^0 ) - D \gamma_{h,t} ) q_h | \vec{x}_{h,u} | & = 0, \\ % \label{eq:fem-m} \int_0^1 \gamma_{h,t} q_h | \vec{x}_{h,u} | - \int_0^1 m_{u,h} q_h + \int_0^1 \vec\tau_h \times \vec{w}_h \cdot \vec{x}_{h,tu} q_h & = 0 \end{align} \] for all \(q_h \in Q_h\) and \(v_h \in V_h\), \[ \begin{align} \label{eq:fem-p} \int_0^1 q_h \vec\tau_h \cdot \vec{x}_{h,tu} & = 0, \end{align} \] for all \(q_h \in Q_h\), and \[ \begin{equation} \label{eq:fem-frame} \int_0^1 \Bigl( \bigl( \vec{e}_{h,j,t} - \bigl( \tilde{\vec{\tau}}_h \times \tilde{\vec{\tau}}_{h,t} + m_h \tilde{\vec{\tau}}_h \bigr) \times \vec{e}_{h,j} \bigr) \cdot \vec{\phi}_h \Bigr)_h | \vec{x}_{h,u} | = 0, \mbox{ for } j = 1,2, \end{equation} \] for all \(\vec{\phi}_h\in V_h^3\).
Lemma If \(\alpha^0, \beta^0, \gamma^0\) are independent of time, any solution to the above problem satisfies: \[ \begin{multline*} \int_0^1 ( \K \vec{x}_{h,t} \cdot \vec{x}_{h,t} + K^\rot_h m_h^2 ) | \vec{x}_{h,u} | \\ + \frac{1}{2} \ddt \int_0^1 \bigl( A \bigl( ( \alpha_h - \alpha^0 )^2 + ( \beta_h - \beta^0 )^2 \bigr)_h + C ( \gamma_h - \gamma^0 )^2 \bigr) | \vec{x}_{h,u} | \\ + \int_0^1 \bigl( ( B ( \alpha_{h,t}^2 + \beta_{h,t}^2 ) )_h + D \gamma_{h,t}^2 \bigr) | \vec{x}_{h,u} | = 0. \end{multline*} \]
Given preferred curvatures \(\alpha^0, \beta^0\), a preferred twist \(\gamma^0\), and initial conditions for \(\vec{x}_h^0, \gamma_h^0\), (which imply compatible initial conditions for \(\vec{w}_h^0\), \(\vec{e}_{1,h}^0\), \(\vec{e}_{2,h}^0\) up to a fixed rotation), for \(n = 1, \ldots, M\) find \(\vec{x}_h^n \in V_h^3, \vec{y}_h^n \in V_{h,0}^3, \vec{w}_h^n \in V_{h,0}^3 + \vec{w}_{b}^n\), \(m_h^n \in V_h, z_h^n, \gamma_h^n, p_h^n \in Q_h\), \(\vec{e}_{h,1}^n, \vec{e}_{h,2}^n \in V_h^3\) such that \[ \begin{align} \label{eq:discrete-x} \int_0^1 \K \bar\partial \vec{x}_{h}^n \cdot \vec{\phi}_h | \vec{x}_{h,u}^{n-1} | - \int_0^1 p_h^n \vec\tau_h \cdot \vec{\phi}_{h,u} \qquad\qquad\qquad\qquad\qquad\qquad \\ \nonumber - \int_0^1 \bigl( ( \id - \vec\tau_h^{n-1} \otimes \vec\tau_h^{n-1} ) \frac{1}{| \vec{x}_{h,u}^{n-1} |} \vec{y}_{h,u}^n + z_h^n \vec\tau_h^{n-1} \times \vec{w}_h^{n-1} \bigr) \cdot \vec{\phi}_{h,u} & = 0 \\ % \label{eq:discrete-y} \int_0^1 \bigl( \vec{y}_h^{n} - A ( \vec{w}_h^n - \alpha^0( \cdot, t^n ) \vec{e}_{1,h}^{n-1} - \beta^0( \cdot, t^n ) \vec{e}_{2,h}^{n-1} ) \qquad\qquad\qquad\qquad \\ \nonumber - B \bigl( ( \id - \tilde{\vec\tau}_h^{n-1} \otimes \tilde{\vec\tau}_h^{n-1} ) \bar\partial \vec{w}_{h}^n - m_h^{n-1} \tilde{\vec\tau}_h^{n-1} \vec{w}_h^n \bigr)_h \bigr) \cdot \vec\psi_h | \vec{x}_{h,u}^{n-1} | & = 0 \\ \label{eq:discrete-w} \int_0^1 \vec{w}_h^{n} \cdot \vec\psi_h | \vec{x}_{h,u}^{n-1} | + \frac{1}{ | \vec{x}_{h,u}^{n-1} | } \vec{x}_{h,u}^n \cdot \vec\psi_{h,u} & = 0 \end{align} \] for all \(\vec\phi_h \in V_h^3\), \(\vec\psi_h \in V_{h,0}^3\), \[ \begin{align} \label{eq:discrete-gamma} \int_0^1 - K^\rot m_h^n v_h | \vec{x}_{h,u}^{n-1} | - \int_0^1 z_h^n v_{h,u} + \int_0^1 \vec{y}_h^{n-1} \cdot ( \tilde{\vec\tau}_h^{n-1} \times \vec{w}_h^{n-1} ) v_h | \vec{x}_{h,u}^{n-1} | & = 0, \\ % \label{eq:discrete-z} \int_0^1 ( z_h^n - C ( \gamma_h^n - \gamma^0( \cdot, t^n) ) - D \bar\partial \gamma_{h}^n ) q_h | \vec{x}_{h,u}^{n-1} | & = 0, \\ % \label{eq:discrete-m} \int_0^1 \bar\partial \gamma_{h}^n q_h | \vec{x}_{h,u}^{n-1} | - \int_0^1 m_{u,h} q_h + \int_0^1 ( \vec\tau_h^{n-1} \times \vec{w}_h^{n-1} ) \cdot \bar\partial \vec{x}_{h,u}^n q_h & = 0 \end{align} \] for all \(q_h \in Q_h\) and \(v_h \in V_h\), \[ \begin{align} \label{eq:discrete-p} \int_0^1 q_h \vec\tau_h^{n-1} \cdot \vec{x}_{h,u}^n & = \int_0^1 | \vec{x}_{h,0,u} | q_h, \end{align} \] for all \(q_h \in Q_h\). Using the abbreviations: \[ \begin{align} \vec{k}_i^n & = \tilde{\vec\tau}_h^{n-1}( u_i ) \times \tilde{\vec\tau}_h^n( u_i ), &\vec{l}_i^n & = \tilde{\vec{\tau}}^n_h( u_i ), & \varphi_i^n & = \Delta t \, m_h^n( u_i ), \end{align} \] we apply the Rodrigues formula twice: \[ \begin{align} \label{eq:discrete-e1-R1} \tilde{\vec{e}}_{j,h}^n( u_i ) & = \vec{e}_{j,h}^{n-1}( u_i ) ( \tilde{\vec\tau}_h^{n-1}( u_i ) \cdot \tilde{\vec\tau}_h^{n}( u_i )) + \vec{k}_i^n \times \vec{e}_{j,h}^{n-1}( u_i ) \\ \nonumber & \qquad + \vec{e}_{j,h}^{n-1}( u_i ) \cdot \vec{k}_i^n \vec{k}_i^n \frac{1}{1 + \tilde{\vec\tau}_h^{n-1}( u_i ) \cdot \tilde{\vec\tau}_h^{n}( u_i )} && j=1,2 \\ % \label{eq:discrete-e1-R2} {\vec{e}}_{j,h}^n( u_i ) & = \tilde{\vec{e}}_{j,h}^n( u_i ) \cos( \varphi_i ) + \vec{l}_i^n \times \tilde{\vec{e}}_{j,h}^n( u_i ) \sin( \varphi_i ) \\ \nonumber & \qquad + ( \tilde{\vec{e}}_{j,h}^n( u_i ) \cdot \vec{l}_i^n )\vec{l}_i^n ( 1 - \cos( \varphi_i ) ) && j=1,2. \end{align} \]
Using the abbreviations: \[ \vec{k}_i^n = \tilde{\vec\tau}_h^{n-1}( u_i ) \times \tilde{\vec\tau}_h^n( u_i ), \vec{l}_i^n = \tilde{\vec{\tau}}^n_h( u_i ), \varphi_i^n = \Delta t \, m_h^n( u_i ), \] we apply the Rodrigues formula twice (for \(j=1,2\)): \[ \begin{multline*} \tilde{\vec{e}}_{j,h}^n( u_i ) = \vec{e}_{j,h}^{n-1}( u_i ) ( \tilde{\vec\tau}_h^{n-1}( u_i ) \cdot \tilde{\vec\tau}_h^{n}( u_i )) + \vec{k}_i^n \times \vec{e}_{j,h}^{n-1}( u_i ) \\ + \vec{e}_{j,h}^{n-1}( u_i ) \cdot \vec{k}_i^n \vec{k}_i^n \frac{1}{1 + \tilde{\vec\tau}_h^{n-1}( u_i ) \cdot \tilde{\vec\tau}_h^{n}( u_i )} \end{multline*} \] \[ \begin{multline*} \vec{e}_{j,h}^n( u_i ) = \tilde{\vec{e}}_{j,h}^n( u_i ) \cos( \varphi_i ) + \vec{l}_i^n \times \tilde{\vec{e}}_{j,h}^n( u_i ) \sin( \varphi_i ) \\ \nonumber \qquad + ( \tilde{\vec{e}}_{j,h}^n( u_i ) \cdot \vec{l}_i^n )\vec{l}_i^n ( 1 - \cos( \varphi_i ) ). \end{multline*} \]
Lemma. If we approximate the constraint equation by \[ \int_0^1 \frac{ \vec{x}_{h,u}^n }{ | \vec{x}_{h,u}^n | } \cdot \vec{x}_{hu}^{n+1} q_h = \int_0^1 L q_h, \] then \[ | \vec{x}_{h,u}^{n+1} | = \frac{ L }{ 1 - \frac{1}{2} | \vec{\tau}_h^{n+1} - \vec{\tau}_h^{n} |^2 } \]
\[ \alpha^0 = 2 \sin( 3 \pi u / 2 ), \quad \beta^0 = 3 \cos( 3 \pi u / 2 ), \quad \gamma^0 = 5 \cos( 2 \pi u ). \]
\[ \mathcal{E}(t^n) := \int_0^1 \Bigl( A | \vec{\kappa}_h - \alpha^0 \vec{e}_{1,h}^n - \beta^0 \vec{e}_{2,h} |^2 + C( \gamma_h^n - \gamma^0 )^2 \Bigr)_h | \vec{x}_{h,u}^n | \]
Error in length element: \[ \mathcal{F}_1(t^n) := \left| \int_0^1 | \vec{x}_{h,u}^n | - L \right|. \]
Error in frame orthonormality: \[ \mathcal{F}_2(t^n) := \left( \sum_{0 \le j_1 \le j_2 \le 2} \int_0^1 | \vec{e}_{j_1,h}^n \cdot \vec{e}_{j_2,h}^n - \delta_{j_1, j_2} |^2 | \vec{x}_{h,u}^n | \right)^{{1}/{2}}. \]
Thank you for your attention! Preprint available arxiv:1904.01325. Slides available at tomranner.org/enumath2019