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Abstract. The aim of this paper is to develop a numerical scheme to approximate evolving interface
problems for parabolic equations based on the abstract evolving finite element framework proposed in

[22]. An appropriate weak formulation of the problem is derived for the use of evolving finite elements

designed to accommodate for a moving interface. Optimal order error bounds are proved for arbitrary
order evolving isoparametric finite elements. The paper concludes with numerical results for a model

problem verifying orders of convergence.

1. Introduction

The model studied in the paper is the following, let Ω be a stationary domain with a moving interface
Γ(t) that encloses a subdomain Ω1(t) and let Ω2(t) = Ω \ Ω1(t). We denote by νΓ the outward pointing
normal to Ω1(t). Let, for i = 1 and 2, Ai be a diffusion tensor field, Bi be a vector field and Ci be a
scalar field, each continuous on Ωi(t). Let f1, f2 and g be time-dependent functions on Ω1(t), Ω2(t) and
Γ(t) respectively. More precise definitions of the problem data are given in Thm. 2.16. We are interested
in well posedness and a suitable finite element scheme for the solutions of the following problem: Find
scalar fields u1 on the subdomain Ω1(t) and u2 on the subdomain Ω2(t), which satisfy:

∂tui −∇ · (Ai(t;x)∇ui) + Bi(t;x) · ∇ui + Ci(t;x)ui = fi(t;x) in Ωi(t), (1.1a)

u2 = 0 on ∂Ω, (1.1b)

u1 − u2 = 0 on Γ(t), (1.1c)

A1(t;x)
∂

∂νΓ
u1

∣∣∣∣
Γ(t)

−A2(t;x)
∂

∂νΓ
u2

∣∣∣∣
Γ(t)

= g(t;x) on Γ(t), (1.1d)

ui(0) = u0i on Ωi(0). (1.1e)

Such equations can arise as subproblems when modelling the transport and diffusion of the concentration
of a dissolved chemical species in evolving spatial domains. In particular, we mention applications in
fluid dynamics [1, 11, 49], materials science [10, 28] and cell biology [29, 47, 50].

There are two main difficulties concerning this problem. The first of which is the evolution of the sub-
domains and the second is the presence of a discontinuous jump across the interface. One common
approach to moving domains is the ALE (Arbitrary Eulerian Lagrangian) method, see [32, 38, 48]. This
involves having a parametrisation of the evolving region. The flow associated with this parametrisation
could be physical or could be made to fit a specific purpose such as in [18] where the flow is chosen
using knowledge of the surface velocity to construct a harmonic extension. Another common method is
to use a discontinuous or immersed Galerkin method [2, 40, 51]. In this paper we propose and analyse an
ALE approach using evolving finite elements on an evolving fitted mesh allowing the use of isoparametric
elements that accurately approximate the boundary and result in higher order error estimates. The
underlying parametrisation is assumed given.
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The key contributions of this work are:

• We provide a functional analytic setting to show well posedness of the continuous problem, (1.1).
• We provide an ALE approach based on evolving isoparametric finite element spaces attached to
evolving sub-domains. The evolving mesh is based on moving the Lagrange nodes with a given
known smooth velocity. Achieving a higher order method requires a good initial mesh.

• We provide a robust error bound which demonstrates the error in an L2 norm is bounded, up to
a constant, by hk+1, where h represents the mesh size and k is the degree of polynomials used
both for the discretisation of the domain and the solution. This is the same order error as if we
interpolated a known smooth solution.

• Numerical results and the simulation code are provided both to demonstrate the results and to
allow others to use the implementation.

The assumption is made that we are given a global, smooth velocity field w. Furthermore, the velocity
field is such that moving the nodes of the mesh with the w preserves the regularity of the mesh over time.
The velocity may be derived from physical considerations or otherwise an arbitrary velocity constructed in
order to define a well behaved numerical scheme. We do not address how to achieve such a velocity in this
work. There are methods in the literature to prevent mesh deformation, which involve re-parametrising
the flow responsible for the movement of the interface into a more suitable flow, see, for example, [9, 19, 20].

1.1. Outline. Sec. 2 gives a well posedness analysis of the continuous equations along with the necessary
functional analysis setting. The finite element construction is in Sec. 3 and the finite element scheme is
in Sec. 4. An optimal order error bound is shown in Sec. 5 under smoothness assumptions on the domain
and its evolution and the solution. Sec. 6 includes a time discretisation of the finite element scheme along
with numerical experiences demonstrating the error bounds are tight. The Appendix includes further
details of the proof the well posedness of the continuous scheme.

2. Evolving space formulation and well posedness

In this paper, c will be used as a generic constant that depends on no quantity of particular importance.
We use (·, ·)H for an inner product on a Hilbert space H and ⟨·, ·⟩X as the dual pairing between a Banach
space X and its topological dual X ′.

2.1. Evolving Hilbert Spaces. We set up the necessary tools from the theory of evolving Sobolev
spaces which were introduced and developed in [3–5]. We will only concern ourselves with the Hilbert
case. A more general theory is developed in [3] concerning general Banach spaces. Let I = [0, T ] be a
closed time interval and let {X(t)}t∈I be a family of Hilbert spaces equipped with norm ∥ ·∥X(t). Assume
that there exists a linear map ϕt : X(0) → X(t) satisfying the following properties:

B1 The map ϕt is invertible for all t ∈ I with inverse denoted by ϕ−t and ϕ0 being the identity.
B2 There exists a constant C independent of time such that ∥ϕtη∥X(t) ≤ C∥η∥X(0), ∥ϕ−tη̃∥X(0) ≤

C∥η̃∥X(t), for all η ∈ X(0) and η̃ ∈ X(t), for all t ∈ I.
B3 The map t 7→ ∥ϕtη∥X(t) is measurable for all η ∈ X(0).

Here and elsewhere we use the notation ϕtη to denote the map ϕt applied to η. If such a map ϕt exists
then we call it the flow map and the pair (X(t), ϕt)t∈I a compatible pair. Given a compatible pair, define
the Hilbert moving spaces as:

L2
X : =

{
η : I →

⋃
t∈I

X(t)× {t}, t 7→ (η̂(t), t) |ϕ−tη̂(t) ∈ L2(I;X(0))

}
, (2.1)
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and the uniformly bounded equivalent:

L∞
X : =

{
η : I →

⋃
t∈I

X(t)× {t}, t 7→ (η̂(t), t) |ϕ−tη̂(t) ∈ L∞(I;X(0))

}
. (2.2)

We identify η(t) = (η̂(t), t) with η̂(t). The spaces Lp
X are equipped with the norm:

∥η∥Lp
X
:=


(∫ T

0
∥η(t)∥2X(t)

) 1
2

for p = 2,

ess supt∈[0,T ] ∥η(t)∥X(t) for p = ∞.

L2
X is indeed a Hilbert space, see [3, Thm. 3.4]. The analogues of the spaces of continuous functions and

of compactly supported smooth functions are defined as:

Ck
X :=

{
η : I →

⋃
t∈I

X(t)× {t}, t→ (η̂(t), t) |ϕ−tη̂(t) ∈ Ck(I;X(0))

}
,

DX :=

{
η : I →

⋃
t∈I

X(t)× {t}, t→ (η̂(t), t) |ϕ−tη̂(t) ∈ D(I;X(0))

}
.

Remark 2.1. (1) The use of a Cartesian product × inside the union in (2.1) rather then just taking
the union of {X(t)}t∈I by itself is in order to guarantee a disjoint union which is crucial to identify
the function point-wise.

(2) Note that the spaces Lp
X do not depend on the choice of the map ϕt.

The strong material derivative in the evolving Hilbert space setting is defined as follows:

∂•t η := ϕt∂t(ϕ−tη), η ∈ C1
X .

Lemma 2.2 ([3], Thm. 2.4). Given a compatible pair (X(t), ϕt)t∈I , the maps ϕt : L2(I;X(0)) → L2
X

and ϕ−t : L
2
X → L2(I;X(0)) define continuous linear isomorphism to their respective spaces.

Now assume {X(t)}t∈I , {Y (t)}t∈I and {X∗(t)}t∈I are families of Hilbert spaces, with X∗(t) the dual of
X(t) for all t ∈ I (crucially, X(t) and X∗(t) are not identified). Assume further that for all t ∈ I, X(t) ⊂
Y (t) ∼= Y ∗(t) ⊂ X∗(t) constitutes a Hilbert triple (in the sense that X(t) is densely and continuously
embedded into Y (t) and Y (t) is identified with its dual via Riesz representation). It is also assumed that
there exists a map ϕt : Y (0) → Y (t) with ϕt|X(0) : X(0) → X(t) with adjoint flow ϕ∗−t : X

∗(0) → X∗(t),

⟨ϕ∗−tf, v⟩X(t) := ⟨f, ϕ−tv⟩X(0), f ∈ X∗(0), v ∈ X(t),

such that (X(t), ϕt|X(t))t∈I , (Y (t), ϕt)t∈I and (X∗(t), ϕ∗−t)t∈I all define compatible pairs and therefore we

can define the spaces L2
X , L

2
Y , L

2
X∗ with their respective flows. In this case, just as for Bochner spaces,

we have the have that (L2
X)∗ is isometrically isomorphic to L2

X∗ [3, Thm. 3.7]. Moreover, the Hilbert
triple structure is preserved: L2

X ⊂ L2
Y ⊂ L2

X∗ . Note that L2
Y remains a Hilbert space with a natural

inner product structure, see [3, Rem. 3.9]. In order to generalise the concept of a “weak time derivative”
to the evolving space, we first assume the following:

D1 The map t 7→ ⟨ϕtw0, ϕtv0⟩X(t) = (ϕtw0, ϕtv0)Y (t) is continuously differentiable for fixed w0, v0 ∈
X0.

D2 For all t ∈ I, the map:

[w0, v0] 7→
d

dt
(ϕtw0, ϕtv0)Y (t),

for [w0, v0] ∈ X(0)×X(0) is continuous.
3
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D3 There exists a constant Cλ independent of time such that, for almost all t ∈ I and w0, v0 ∈ X(0),
we have: ∣∣∣∣ ddt (ϕtw0, ϕtv0)Y (t)

∣∣∣∣ ≤ Cλ∥w0∥Y (0)∥v0∥Y (0).

Definition 2.3. Let Ass. D1 to D3 hold and label:

λ(t;w, v) :=

[
d

dt
(ϕtw0, ϕtv0)Y (t)

]∣∣∣∣
(w0,v0)=(ϕ−tw,ϕ−tv)

, w, v ∈ X(t).

Then λ(t; ·, ·) : Y (t) × Y (t) → R is a continuous, symmetric, bounded and bilinear for almost all t ∈ I.
We say w ∈ L1

X has a weak material derivative if there exists v ∈ L1
X∗ such that:∫ T

0

(w(t), ∂•t η)Y (t) dt =

∫ T

0

⟨v(t), η⟩X(t) + λ(t;w, η) dt,

for all η ∈ DX . We label the weak material derivative v = ∂•tw.

This definition follows all properties we expect from a weak derivative, such as being equivalent to the
strong material derivative if the function is regular enough.

This allows us to define the equivalent of the Bochner solution space.

Definition 2.4. We define W (X,Y ) :=
{
v ∈ L2

X , ∂
•
t v ∈ L2

Y

}
with the norm:

∥v∥2W (X,Y ) := ∥v∥2L2
X
+ ∥∂•t v∥2L2

Y

and the solution space W (X,X∗) :=
{
v ∈ L2

X , ∂
•
t v ∈ L2

X∗

}
with the norm:

∥v∥2W := ∥v∥2L2
X
+ ∥∂•t v∥2L2

X∗
.

Definition 2.5. The space W (X,Y ) is said to satisfy moving space equivalence if:

v ∈W (X,Y ) ⇐⇒ ϕ−tv ∈ W2,2(X(0), Y (0)),

where W2,2(X(0), Y (0)) = {v0 ∈ L2(I;X(0)), ∂tv ∈ L2(I;Y (0))}.

Theorem 2.6 (The Transport Theorem). Assume v, w ∈W (X,X∗) and the moving space equivalence is
satisfied, then, the map t 7→ (v, w)Y (t) is uniformly continuous and for almost all t ∈ I, and the following
holds:

d

dt
(v, w)Y (t) = ⟨∂•t v, w⟩X(t) + ⟨∂•tw, v⟩X(t) + λ(t;u, v).

Moreover, C0
Y ↪→W (X,X∗).

See [3, Sec. 4.5] for proofs.

Lemma 2.7 (Characterisation of Material Derivative). Let the moving space equivalence hold forW (X,X),
then for v ∈ W (X,X), we have v ∈ C0

X and there exists a function v0 ∈ W2,2(X(0), X(0)) such that
v = ϕtv0. Moreover, C1

X is dense in W (X,X).

This follows from [3, Lem. 3.20]. Importantly, this implies ∂•t v = 0 if and only if v = ϕtv0 for some
v0 ∈ X(0).
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Ω1(t)

Γ(t)

ν(t)
Ω2(t)

∂Ω

Figure 2.1. An example configuration of the domain.

2.2. Setting up the Domain. Let Ω be a stationary domain in Rd, d = 2, 3, with piecewise linear
boundary and let {Γ(t), t ∈ I} be a family of closed compact connected C2+k (k ≥ 0) hypersurfaces with
Γ(t) ⊂ Ω. Let Ω1(t) be a domain in Ω without boundary ∂Ω1(t) = Γ(t) for all t ∈ I. Let Ω2(t) := Ω\Ω1(t)
and assume that Γ(t) ∩ ∂Ω = ∅ for all t ∈ I, then:

Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = Γ(t), ∂Ω2(t) = Γ(t) ∪ ∂Ω.

A sketch of the domains is shown in Fig. 2.1.

Remark 2.8. The assumption that the outer boundary is piecewise linear is made to avoid having to
analyse perturbation of the domain for Dirichlet boundary conditions, however the presented method
and analysis can easily be altered if one removes this assumption.

We label the outer normals of Ω1(t) and Ω2(t) by νΓ(t) and ν∂Ω2(t) respectively. Let:

Qi :=
⋃
t∈I

Ωi(t)× {t}, Q := Ω× I.

Furthermore, we assume there exists a given, global velocity field w transporting Ω1(t) and Ω2(t), i.e
w · νΓ(t)|Γ(t) = VΓ where VΓ is the normal velocity of Γ(t), w · ν∂Ω2(t)|∂Γ(t) = −VΓ and w · ν∂Ω2(t)|∂Γ = 0.

Throughout the paper this velocity is assumed to be of regularity w ∈ C(I;C(Ω;Rd)) with wi(t; ·) ∈
C2(Ωi(t);Rd). Let Φi(t;x) : Ωi(0) → Ωi(t) be the solution to the ordinary differential equations:

d

dt
Φi(t;x) = w(t;Φi(t;x)) x ∈ Ωi(0), (2.3)

Φi(0;x) = x.

We assume the solution exists and is of regularity Φi ∈ C1(Qi;Rd) with Φi(t; ·) : Ωi(0) → Ωi(t) and
Φi(t; ·) ∈ C2(Ωi(0);Rd), see [46, Thm. 1.45] and [30, Thm. II.1.1, Sec. V] for the necessary additional
conditions. Furthermore, both Φi(t; ·) are invertible diffeomorphisms for all t ∈ I with Im(Φi(t; ·)) =
Ωi(t). We denote by Φi(−t, ·) the inverse of Φi(t, ·). Since we assumed w ∈ C(I;C(Ω;Rd)), it follows
that Φ1(t;x)|Γ(0) = Φ2(t;x)|Γ(0).

Remark 2.9. For the abstract formulation of the problem, it is only required to assume that the velocity
field w is of sufficient regularity. However, for the purpose of evolving the mesh later, we will assume
this velocity field is known explicitly.
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Let J t
i denote the determinant of Jacobian matrix, J t

i = det[∇Φi(t;x)]. The prior assumptions imply
J t
i (·) ∈ C1(Ωi(0);R) and there exists CΩ independent of time and space such that:

1

CΩ
≤ |J t

i | ≤ CΩ,

and J−t
i denotes its inverse.

Remark 2.10. Note that we have assumed the global parametric velocity w is given. The solution of the
partial differential equation system is independent of w apart from the requirements that wΓ · νΓ(t) = VΓ
and w · ν∂Ω = 0. However the evolving mesh does depend on w hence the discrete solution depends on
the full parametric velocity.

Let dΓ(t;x) be the signed distance function to Γ(t):

dΓ(t;x) =

{
− inf{|x− y| : y ∈ Γ(t)}, forx ∈ Ω1(t),

inf{|x− y| : y ∈ Γ(t)}, forx ∈ Ω2(t).

Then, since the interface is of class C2, there exists a constant δ > 0 such that if x ∈ NΓ(t) := {x ∈
Ω. |dΓ(t;x)| ≤ δ}, it can be uniquely decomposed as:

x = dΓ(t;x)νΓ(t)(Πt(x)) + Πt(x), (2.4)

where Πt(·) is the nearest point on Γ(t), i.e, Πt(x) := inf{|y − x| : y ∈ Γ(t)} (see [42, Sec. 2.3]). We refer
to the set NΓ(t) as the tubular neighbourhood of Γ(t). Note that δ can be chosen independently of time
by the fact that I is compact. Moreover, via the assumption that Γ(t) ∩ ∂Ω = 0 for all t ∈ I, δ can be
chosen small enough such that NΓ(t) ∩ ∂Ω = ∅ for all t ∈ I.

For the error analysis, we require further regularity of the flow to yield the results collected in the following
lemma.

Lemma 2.11. Let Θ ∈ N. Assume further regularity on the flow map Φ ∈ C2+Θ
(
I;C2+Θ

(
Ωi(t);Rd

))
and the initial surface Γ(0) is class C2+Θ, then the following geometric quantity have additional regularity:

• Γ(t) is of class C2+Θ,
• J t

i (·) ∈ C1+Θ(Ωi(0);R),
• dΓ(t; ·) ∈ C2+Θ(NΓ(t);R),
• Πt(·) ∈ C1+Θ(NΓ(t);Rd).

See [24] and [26, Lem. 14.16].

2.3. Realisation. For a given function v acting on Ω, we decompose it as:

v1 := vχΩ1(t)
, v2 := vχΩ2(t)

,

where χΩi(t)
= 1 if x ∈ Ωi(t) and zero otherwise. A function v on Ω will be identified as the pair

v = (v1, v2). The jump operator J·KΓ(t) : C(Ω1(t);R)× C(Ω1(t);R) → C(Γ(t);R) as:

JvKΓ(t) := [v1 − v2]|Γ(t).

This functional has a natural extension on the Cartesian product of standard Sobolev spaces H1(Ω1(t))×
H1(Ω2(t)) via use of the trace maps; Ti(t) : H

1(Ωi(t)) → H1/2(∂Ωi(t)), i ∈ {1, 2}, (see [45, Sec. 7.2.5]
for an extensive definition of the trace map) as:

JvKΓ(t) := [T1(t)v1 − T2(t)v2]|Γ(t).
6
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We define the following spaces:

H(t) := L2(Ω1(t))× L2(Ω2(t)), ∥v∥2H(t) :=

2∑
i=1

∥vi∥2L2(Ωi(t))
,

V (t) := {v ∈ H1(Ω1(t))×H1(Ω2(t)), JvKΓ(t) = 0, v2|∂Ω = 0}, ∥v∥2V (t) :=

2∑
i=1

∥vi∥2H1(Ωi(t))

Zk(t) := {w ∈ V (t)| wi ∈ H1+k(Ωi(t))}, ∥w∥2Zk(t)
:=

2∑
i=1

∥wi∥2H1+k(Ωi(t))
.

Note that due to the continuity of the trace operators Ti(t) on H
1(Ωi(t)), V (t) defines a closed subspace

of H1(Ω1(t)) × H1(Ω2(t)) and contains H1
0 (Ω1(t)) × H1

0 (Ω2(t)), hence is dense within H(t) . For an
element v = (v1, v2) ∈ V (t), we will identify v|Ω1(t) = v1 and v|Ω2(t) = v2. We also define the interface
space:

H1/2(Γ(t)) = {v ∈ L2(Γ(t)), |v|H1/2(Γ(t)) <∞}, |v|H1/2(Γ(t)) :=

∫
Γ(t)

∫
Γ(t)

|v(x)− v(y)|2

|x− y|d
dxdy,

with norm given by:

∥v∥2H1/2(Γ(t)) : = ∥v∥2L2(Γ(t)) + |v|2H1/2(Γ(t)).

Then, H1/2(Γ(t)) is a Hilbert space and moreover is dense and compactly embedded in L2(Γ(t)) (see
[39, Sec. 2]). For consistency of notation, let VΓ(t) = H1/2(Γ(t)) and HΓ(t) = L2(Γ(t)), and identify the
Hilbert triple VΓ(t) ⊂ HΓ(t) ⊂ V∗

Γ(t).

Now for a function v ∈ H(t) and w ∈ HΓ(t), the respective flows are defined as:

ϕtv := (v1(t;Φ1(−t;x)), v2(t;Φ2(−t;x))), ϕtw := w(t;Φ1(−t;x)).

Lemma 2.12. The pairs (V (t), ϕt)|t∈I , (H(t), ϕt)|t∈I , (V ∗(t), ϕ∗−t)|t∈I , (VΓ(t), ϕt)|t∈I , (HΓ(t), ϕt)|t∈I

and (V∗
Γ(t), ϕ

∗
−t)|t∈I are all compatible.

Assuming the added regularity Φi(t; ·) ∈ C1+k(Ωi(0);Rd)), the pair (Zk(t), ϕt)|t∈I is compatible.

Proof. Ass. B1 to B3 need to be checked. This will be checked only for V (t) as a similar logic can be
employed for the remaining spaces. B1 follows from both Φ1(−t;x), Φ2(−t;x) being invertible diffeo-
morphisms. For B2, via simple manipulation:

∥ϕtv∥2V (t) =

2∑
i=1

∫
Ωi(t)

|vi(t;Φi(−t;x))|2 + |∇vi(t;Φi(−t;x))|2,

=

2∑
i=1

∫
Ωi(0)

[ |vi(t;x)|2 + |[∇Φi(−t; y)]T |y=Φ(t;x)∇vi(t;x)|2]J t
i (2.5)

≤ c(|J t
i |L∞(Ωi(0)), |∇Φi(−t, x)|L∞(Ωi(t)))∥v∥

2
V (0),

The bound follows from the assumption on the regularity of the velocity field. The same method shows a
similar bound for ∥ϕ−tṽ∥V (0) ≤ c∥ṽ∥V (t) for all ṽ ∈ V (t). To show measurability, B3, note that the second
equality in (2.5) is continuous. For the compatibility of the boundary spaces VΓ(t), HΓ(t) and V∗

Γ(t), see
[5, Sec. 4 and 5]. Under the added regularity the compatibility of (Zk(t), ϕt)|t∈I follows similarly. □

We will identify both V (t) ⊂ H(t) ⊂ V ∗(t) and VΓ(t) ⊂ HΓ(t) ⊂ V∗
Γ(t) with the structure X(t) ⊂ Y (t) ⊂

X∗(t) developed in Sec. 2.1.
7
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Lemma 2.13. The moving space equivalence is satisfied between W (V, V ∗) and W(V (0), V ∗(0)).

Proof. The proof follows similarly from the one given for [3, Prop. 7.4] as by assumption the Jacobian
determinate is at least of regularity J t

i ∈ C1(I;C1(Ωi(0);R)). □

Remark 2.14. It does not matter which of the flows Φi(t;x) is used to define HΓ(t) as Φ1(t;x)|Γ(0) =
Φ2(t;x)|Γ(0). Moreover, it can be shown that v = (v1, v2) ∈ V (t) if, and only if, v1χΩ1(t)+v2(1−χΩ1(t)) ∈
H1

0 (Ω) with equivalent norms, hence the space V (t) can be thought as an identification of the components
of a functions in H1

0 (Ω).

We may define both moving space triples L2
V ⊂ L2

H ⊂ L2
V ∗ and L2

VΓ
⊂ L2

HΓ
⊂ L2

V∗
Γ
.

Theorem 2.15 (Reynolds’ Transport Theorem). Let gi ∈ C1(Qi;R), then:

d

dt

2∑
i=1

∫
Ωi(t)

gi =

2∑
i=1

∫
Ωi(t)

∂tgi +w · ∇gi + gi∇ ·w.

Proof. We use another version of Reynolds’ Transport Theorem given in [42, Sec. 2.5]. For g = (g1, g2) ∈
C1(Q1;R)× C1(Q2;R), then:

d

dt

∫
Ω\Γ(t)

g =

∫
Ω\Γ(t)

∂tg −
∫
Γ(t)

JgKΓ(t)VΓ.

Note that here Ω \ Γ(t) = Ω1(t) ∪ Ω2(t), and:

2∑
i=1

∫
Ωi(t)

w · ∇gi + gi∇ ·w =

2∑
i=1

∫
Ωi(t)

∇ · (wgi) = −
∫
∂Ω

[wgi] · ν∂Ω −
∫
Γ(t)

JwgKΓ(t) · νΓ(t),

= −
∫
Γ(t)

JgKΓ(t)VΓ. □

Note that via use of the chain rule and the definition of Φ(t; ·) (2.3), for a function ηi ∈ C1(Qi;R):[
d

dt
(ηi(t;Φi(t;x))

]∣∣∣∣
x=Φi(−t;y)

= ∂tηi(t; y) + ∂t(Φi(t;x))|x=Φi(−t;y) · ∇ηi(t;x),

= ∂tηi(t; y) +w(t; y) · ∇ηi(t;x).

Giving us back the classical definition for the material derivative, see [27, Sec 1.1.1]. For a function
v ∈ C1

V , we define:

∂•t v = ϕt
d

dt
(v1(t;Φ1(t;x)), v2(t;Φ2(t;x))) = ([∂t +w · ∇]v1(t;x), [∂t +w · ∇]v2(t;x)) =: (∂•t v1, ∂

•
t v2).

One can check that due to the regularity of the flow, the assumptions D1 to D3 are satisfied on the triple
V (t) ⊂ H(t) ⊂ V ∗(t), moreover, via Reynold’s transport theorem, one can check that the bilinear form
λ introduced Sec. 2.1 in this case becomes:

λ(t; v, η) = (∇ ·wv, η)H(t) =

2∑
i=1

∫
Ωi(t)

[∇ ·w]vi ηi. (2.6)

See [3, Lem. 6.3] for more details.
8
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2.4. The Weak Formulation. Taking the strong problem (1.1), assuming there exists a regular enough
solution u, we can rewrite the partial differential equation as:

∂•t ui +∇ ·wui −∇ · (Ai(t;x)∇ui) + [Bi(t;x)−w] · ∇ui + [Ci(t;x)−∇ ·w]ui = fi. (2.7)

Here the term ∇·w, corresponding to the previously identified bilinear form λ(t; ·, ·), (2.6), is introduced
to get the equation in a more convenient form. Then testing with a function v ∈ L2

V and using the
interface condition, we arrive at the following variational problem:∫ T

0

⟨∂•t u, v⟩V (t) dt+

∫ T

0

λ(t;u, v) +

2∑
i=1

∫
Ωi(t)

Ai∇ui · ∇vi + [Bi −w] · ∇ui vi + [Ci −∇ ·w]ui vi︸ ︷︷ ︸
=:a(t;u,v)

dt

=

∫ T

0

⟨f, v⟩V (t) + ⟨g, v⟩VΓ(t)︸ ︷︷ ︸
=:l(t;v)

dt.

Note that here the Hilbert triple structure is used for the duality pairings; ⟨f, v⟩V (t) = (f, v)H(t) and
⟨g, v⟩VΓ(t) = (g, v)HΓ(t), and we have the initial condition u(0) = u0. This gives us the weak formulation:∫ T

0

⟨∂•t u, v⟩V (t) + a(t;u, v) + λ(t;u, v) dt =

∫ T

0

l(t; v) dt, (2.8)

for all v ∈ L2
V . Moreover if, instead v ∈ W (V, V ∗), we get the equivalent formulation via the transport

theorem (for notational convenience later on, we will label the inner product (·, ·)H(t) =: m(t; ·, ·)):

d

dt
m(t;u, v) + a(t;u, v) = m(t;u, ∂•t v) + l(t; v).

If ∂•t u ∈ L2
H , then via identification of the Hilbert triple, we have:

⟨∂•t u, v⟩V (t) = m(t; ∂•t u, v),

and the problem can be restated abstractly in this case as u ∈W (V,H) being the solution to:

m(t; ∂•t u, v) + a(t;u, v) + λ(t;u, v) = l(t; v), (2.9)

for almost all t ∈ I, and all v ∈ L2
V .

2.5. Well Posedness.

Theorem 2.16. Assume the following:

A1 The coefficients Ai ∈ C(Qi;Rd×d), Bi ∈ C(Qi;Rd) and Ci ∈ C(Qi;R);
A2 There exists a constant γ > 0 such that:

inf
t∈I

inf
x∈Ωi(t)

Ai(t;x)ξ · ξT ≥ γ|ξ|2 ∀ξ ∈ Rd; (2.10)

A3 (u0, f, g,wi,w) ∈ H(0)× L2
V ∗ × L2

V ∗
Γ
× C1(Qi,Rd)× C(I × Ω;Rd)),

then there exists a unique solution u ∈W (V, V ∗) to (2.8) with inequality:

∥u∥W ≤ C

(
∥f∥L2

V ∗
+ ∥g∥L2

V∗
Γ

+ ∥u0∥H(0)

)
.

Furthermore, if it holds that:

A4 (u0, f, g,Ai) ∈ V (0)× L2
H ×W (VΓ,V∗

Γ)× C1(Qi;Rd×d), and Ai is symmetric,
9
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then the solution is of additional regularity u ∈W (V,H) with bound:

∥u∥W (V,H) ≤ C

(
∥f∥L2

H
+ ∥u0∥V (0) + ∥g∥W (VΓ,V∗

Γ)

)
.

Proof. The existence and uniqueness follows from a standard application of the Babuska-Lax-Milgram
theorem in conjunction with Poincaré’s inequality, detailed in [4, Thm. 3.6]. The proof of additional
regularity under Ass. A4 is given in the Appendix (Lem. A.4). □

Furthermore, in order to analyse the error in the finite element approximation of the material derivative,
it is convenient to define notation for the derivative of the bilinear form a(t; ·, ·) to be:

b(t; v, w) :=
d

dt
[a(t; v, w)]− a(t; ∂•t v, w)− a(t; v, ∂•tw), ∀v, w ∈W (V, V ). (2.11)

Then, assuming furthermore that Ai ∈ C1(Qi;Rd×d), Bi ∈ C1(Qi;Rd) and Ci ∈ C1(Qi;R), the bilinear
form b(t; ·, ·) exists and can be explicitly calculated as:

b(t; v, w) =

2∑
i=1

∫
Ωi(t)

DA
i (w,Ai, vi, wi) +DB

i (w,Bi, vi, wi)

+ vi wi∂
•
t [Ci −∇ ·w] +∇ ·w[Ci −∇ ·w]vi wi, (2.12)

where

DA
i (w,Ai, vi, wi) = (∂•t Ai(t;x) +∇ ·wAi(t;x))∇vi · ∇wi − 2Di(w,Ai)∇vi · ∇wi,

DB
i (w,Bi, vi, wi) = ∂•t [Bi(t;x)−w] · ∇vi wi + [Bi(t;x)−w] · ∇vi wi∇ ·w

−
d∑

j,k=1

[Bi −w]j(∇jwk)∇kvi wi,

[Di(w,Ai)]jl =
1

2

d∑
r=1

[Ai(t;x)]jr∇rwl + [Ai(t;x)]lr∇rwj .

Note that the derivative of the bilinear form m(t; ·, ·) is already assumed to exist and equals λ(t; ·, ·)
introduced in Sec. 2.1.

3. Evolving finite elements

From this point on, we assume the additional geometric regularity as described in Lem. 2.11. We begin
by detailing the initial triangulation of the domain and follow with the construction of the evolving mesh.
In order to relate discrete and continuous functions we introduce the concept of a lift mapping and then
finally define evolving finite element spaces.

3.1. Construction of the Initial Domain.

Initial Mesh Construction/Assumption:

M1 We first perform a partition into d-dimensional simplices corresponding to a polyhedral approx-

imation Ω̃h
1 of the interior domain Ω1(0), Ω̃h

1 = ∪M1
j=1K̃

j
1 , J̃ h

1 := {K̃j
1}

M1
j=1, where K̃j

1 are the

simplicial elements of positive diameter, bounded by some h̃, and M1 is the number of elements.
10



C.M. ELLIOTT, T. RANNER, AND P. STEPANOV ESFEM PARABOLIC TRANSMISSION

Figure 3.1. Showing the difference between a non viable initial mesh and an adequate
one for a circle enclosed in a square. The one on the left breaking condition M5 whereas
the one on the right following condition M5.

M2 The set Ω̃h
2 := Ω \ Ω̃h

1 is polyhedral and we construct a partition into d-dimensional simplices

J̃ h
1 := {K̃j

2}
M2
j=1 with maximum diameter h̃. Let J̃ h = ∪2

i=1J̃ h
i assume that all partitions

{J̃ h
1 , J̃ h

2 , J̃ h} are admissible, shape regular and quasi-uniform in {Ω̃h
1 , Ω̃

h
2 ,Ω} respectively, see

[12, Def. 5.1].

M3 Each element K̃ contains d+ 1 facets labelled {Ẽj}d+1
j=1 ⊂ K̃. We refer to the set of all facets of

all elements in J̃ h by J̃ h
∂ .

M4 For Ẽ ∈ J̃ h
∂ , if there exists K̃1 ∈ J̃ h

1 and K̃2 ∈ J̃ h
2 such that Ẽ = K̃1 ∩ K̃2, then we call Ẽ an

interface facet and label the collection of those facets J̃ h
Γ and the union of interface facets Γ̃h. If

for a given Ẽ, there is only one element K̃ ∈ J̃ h
2 such that Ẽ ⊂ K̃, then such a facet is called a

boundary facet.

M5 We restrict the vertices of interface facets to be on Γ(0), i.e, if Ẽ is an interface facet, and {ãj
Ẽ
}d−1
j=1

are the vertices of Ẽ, then {ãj
Ẽ
}d−1
j=1 ⊂ Γ(0). Conversely, we will assume that if a facet has all its

vertices on the interface, then it is an interface facet. See Fig. 3.1 for an example.

M6 Let K̂ref be the reference element of J̃ (i.e for all K̃ ∈ J̃ , there exists an invertible affine map

FK̃ such that FK̃(K̂ref) = K̃). The reference element is then equipped with the standard kth

(k ∈ (0,Θ)) Lagrangian element triple (K̂ref , P̂
k, Σ̂k) (see [13, Sec. 3.2]) where P̂ k is the set of

kth order Lagrange polynomials and Σ̂k is the dual basis of P̂ k, which in this case takes the form

Σ̂ = {χ → χ(α̂), α̂ ∈ N(K̂ref)}, where N(K̂ref) is the set of Lagrangian nodes in K̂ref . Let

(K̃, P̃ k, Σ̃k) and (K̃ ′, P̃ ′k, Σ̃′k) be two adjacent elements in J̃ , the following assumption is made( ⋃
α∈N(K̃)

α̃

)
∩ K̃ ′ =

( ⋃
α′∈N(K̃′)

α̃′
)
∩ K̃,

i.e the Lagrangian nodes are shared between two adjacent elements.

Note that via construction, Ẽ ∈ J̃ h
Γ , if and only if there exits an element K̃1 ∈ J̃ h

1 and K̃2 ∈ J̃ h
2 with

Ẽ = K̃1 ∩ K̃2 and hence Γ̃h
0 = Ω̃h

1 (0) ∩ Ω̃h
2 (0). This construction defines Lagrangian triangulated bulk

domains (Ω̃h
1 , Ω̃

h
2 , Ω̃

h), and Γ̃h
0 defines a triangulated hypersurface, see [22, Def. 4.14 and 6.14]. After

the initial triangulation, we define the isoparametric version using the same method as [22, Sec. 8.5]
11
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Θ Degree of additional geometric regularity assumed in Lem. 2.11.(
K̂ref , P̂

k, Σ̂k
)

Standard k − th order Lagrangian reference element, with k ∈ (0,Θ).

α̂ Lagrange node of the reference element.

i ∈ {1, 2} As a subscript, will always only refer to which of the domains

the quantity appertains.

Ω̃h
i , Γ̃

h Initial Triangulation of the domains and interface(at t = 0).

J̃ h
i , J̃ h, J̃ h

Γ Partitions of Ω̃h
i ,Ω and Γ̃h respectively.

K̃, Ẽ, α̃, ã Element/Facet/Lagrangian node/vertex appertaining to J̃ h.

Ψh Diffeomorphism map Ψh : Ω̃h
i → Ωi.

Π0(x) Minimal distance projection onto Γ(0).

Ωh
i (0),Γ

h(0) Triangulated bulk domains (hypersurface) approximating Ωi(0),Γ(0).

J h
i ,J h,J h

Γ Partition of isoparametric element of Ωh
i (0),Ω,Γ

h(0).

Table 3.1. List of symbols

which we detail in the following. Let K̂ref be the reference element of the partition J̃ h, with reference

map FK̃ : K̂ref → K̃. For η ∈ C(Ω;R) and for some K̃ ∈ J̃ h, we define the interpolation operator
element-wise:

Ĩh(η)|K̃ :=
∑

{j:χj∈P̃k}

σj(η)χj =
∑

{j:χj∈P̃k}

η
(
α̃j

K̃

)
χj .

Let {ãj
K̃
}d+1
j=1 be the vertices of an element K̃ ∈ J̃ h. If two or more of the vertices are on the interface

Γ(0), then the element is referred to as an interface element. Let F̃ be the set of all interface elements

and define the following function Ψh : Ω → Ω element-wise as follows. If K̃ /∈ F̃ , then Ψh(x) = x for

x ∈ K̃. If instead K̃ ∈ F̃ , then expand x ∈ K̃ into barycentric coordinates:

x =

d+1∑
j=1

µj(x)ã
j

K̃
.

Let LK be the number of vertices in K̃ that lie on Γ(0) (LK ≥ 2 by assumptions) and assume that the
vertices are ordered so that the first LK lie on Γ(0). Let:

µ̃K(x) :=

LK∑
j=1

µj(x), σK̃ := {x ∈ K̃, µ̃K(x) = 0}.

From the properties of barycentric coordinates, µ̃K can be seen as the distance from the discrete interface,
with µ̃K(x) = 1 when x is on a facet between vertices on the interface, and µ̃K(x) = 0 when x is on the
facet spanned by non-interface vertices.

Let

y(x) =

LK∑
j=1

µj(x)

µ̃K(x)
ãj
K̃
. (3.1)

12
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Note that y(x) ∈ K̃ since 0 ≤ µj(x) ≤ µ̃K(x). Hence define:

Ψh|K̃(x) :=

{
x+ (µ̃K(x))k+2(Π0(y(x))− y(x)) ifx /∈ σK̃ ,

x otherwise.
(3.2)

Where Π0 is the nearest point projection on Γ(0), introduced in (2.4). We summarise the properties
of this map in the following theorem. For the definition of triangulated bulk domain and k-bulk finite
element, see [22, Def. 4.14 and 4.5]. We denote by Ĩh interpolation into the space of polynomials of degree

k over K̃.

Theorem 3.1 ([22], Lem. 4.8 and 8.8). For h̃ small enough, the map Ψh|K̃ ∈ Ck+1(K̃;Rd)and is

invertible for each K̃ ∈ J̃ h and Ψh : Γ̃h
0 → Γ(0). Define the following:

FK := [ĨhΨh](FK̃),

K := FK(K̂ref),

P k := {χ̂k ◦ F−1
K : χ̂k ∈ P̂ k},

Σk := {χ 7→ σ̂(χ ◦ FK) : σ̂ ∈ Σ̂k},

then the triplet (K,P k,Σk) with reference map FK defines a k-bulk finite element triplet ([22, Def. 4.5]).

Let J h
i = {[ĨhΨh](K̃i), K̃i ∈ J̃ h

i }, J h
Γ = {[ĨhΨh]1(E), E ∈ J̃ h

Γ } (here [ĨhΨh]1 refers to taking the in-

terpolation with the adjacent element in J̃1), then {J h
1 ,J h

2 ,J h
Γ } are conforming admissible sub-divisions.

Furthermore, let:

Ωh
i (0) :=

⋃
Ki∈J h

i

Ki, Ω
h :=

⋃
K∈J h

K, Γh(0) :=
⋃

E∈J h
Γ

E,

then (Ωh
1 (0),Ω

h
2 (0)) define triangulated bulk domains approximating (Ω1(0),Ω2(0)), Γ

h(0) a triangulated
hypersurface approximating Γ(0).

Now since we are dealing with an interface problem, we require additionally to check if J h = J h
1 ∪ J h

2

forms a conforming admissible sub-division of the whole domain Ω.

Lemma 3.2. J h forms a conforming admissible sub-division of the whole domain Ω, moreover, interface
facets are mapped to their isoparametric equivalent in such a way that:

Γh(0) =
⋃

E∈J h
Γ

E = Ωh
1 ∩ Ωh

2 .

Proof. Since J h is the union of two admissible conforming subdivision, it only remains to check that
if we are given two elements Ki ∈ J h

i , then K◦
1 ∩ K◦

2 = ∅. It suffices to show the invertibility of the

map ĨhΨh on Ω. For an interface facet Ẽ with two adjacent element K̃i we require continuity across

E: Ψh|K̃1
(Ẽ) = Ψh|K̃2

(Ẽ). By construction of the mesh, x ∈ Ẽ, µK1
(x) = µK2

(x) = 1. This implies

y(x) = x in (3.1) and hence both maps Ψh|K̃i
(x) = Π0(x) from (3.2). Any Lagrangian node α̃i on Ẽ will

be mapped by both maps to αi := Π0(α̃i). Since each interface facet contains the exact amount of nodes
to uniquely define a polynomial on the facet, which must equal the restriction on the interface element

of the Lagrangian polynomial on the full element (see [12, Rem. 5.4]), hence for x ∈ Ẽ:

[ĨhΨh]|K̃1
(x) =

∑
{j:χj∈Pk}

Ψh(α̃j

K̃1
)χj(x) =

∑
{j:χj∈Pk}

Π0(α̃
j

K̃1
)χj(x),

=
∑

{j:χj∈Pk}

Π0(α̃
j

K̃2
)χj(x) =

∑
{j:χj∈Pk}

Ψh(α̃j

K̃2
)χj(x) = [ĨhΨh]|K̃2

(x).

13
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For Ẽ ∈ J̃ h
Γ , let K̃i ∈ J̃ h

i be the adjacent elements to E and Ki = IhΨh(K̃i). Since the map IhΨh is

invertible onto its image for each K̃ ∈ J̃ h and is continuous across the intersection Ẽ, it holds that IhΨh

is invertible on K̃1 ∪ K̃2, since both elements are closed, hence:

E := [IhΨh]|K̃1
(Ẽ) = IhΨh(K̃1 ∩ K̃2) = IhΨh(K̃1) ∩ IhΨh(K̃2) = K1 ∩K2.

Therefore the image of an interface facet remains an interface facet. Moreover, this shows that K◦
1 ∩K◦

2 =
∅ for any Ki ∈ J h

i and hence J h is a conforming admissible sub-division. □

Fig. 3.2 shows how the map ĨhΨh deforms the original mesh. We are initially given two tetrahedral

elements of the initial meshes, one in Ω̃h
1 and one in Ω̃h

2 , intersecting on an interface element. Applying

the map ĨhΨh to this yields isoparametric elements whose intersection is the image of the interface
element under ĨhΨh.

ã2

ã1

ã3ã2

Ω̃h
2(0)

Ω̃h
1(0)

Γ(0)
Ψh

ã1

ã3

Ωh
2(0)

Ωh
1(0)

Γh(0)

ĨhΨh

Figure 3.2. The intersection of two interface elements (teal and blue respectively) of
different domains. The shared interface facet is then pushed by the map Ψh to become a

piece of Γ(0). The map ĨhΨh maps the original mesh to an isoparametric mesh approx-
imating the interface.

Let αj
K |N(k)

j=1 be the Lagrangian nodes on an element K ∈ J h, which by construction are defined as

αj
K = FK(α̂j

ref), the corresponding interpolation operator for a given function η ∈ C(Ω;R) is given by:

[Ihη]|K =
∑

{j:χj∈Pk}

η(αj
K)χj .

3.2. Time Dependent Mesh. Define the flow:

Φh
i (t; ·)|Ki(0) := IhKi(0)

[Φi(t;Ψ
h ◦ (ĨhΨh)−1(·))]. (3.3)

We denote by Φh
i (−t, ·)|Ki(t) : Ki(t) → Ki(0) the space-only inverse of Φh

i (t; ·)|Ki(0).

Remark 3.3. The flow is defined this way such that it evolves the parametric meshes Ωh
i (0). Indeed,

decomposing Φh
i (t; ·) into its components:

(ĨhΨh)−1 : Ωh
i (0) → Ω̃h

i , Ψ
h : Ω̃h

i → Ωi(0), Φi(t; ·) : Ωi(0) → Ωi(t).

14
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Hence, the flow Φh
i (t; ·) is a polynomial function approximating the evolution of the domains. Moreover,

this does define a proper flow map, as, at t = 0:

Φh
i (0;x)|Ki(0) = IhKi(0)

[Ψh ◦ (ĨhΨh)−1(x)] =
∑

χj∈Pk

Ψh ◦ [(ĨhΨh)−1(αj
Ki

)]χj(x),

=
∑

χj∈Pk

Ψh(α̃j
Ki

)χj(x) =
∑

χj∈Pk

αj
Ki
χj(x) = x.

The composition property for Φh
i (t+ s; ·) = Φh

i (t;Φ
h
i (s; ·)) will be shown following the next lemma.

For h̃ small enough, this map is an invertible diffeomorphism on each element K0 ∈ J h. As before, we
summarise the construction in the following lemma:

Lemma 3.4. For h̃ small enough, map Φh
i (t; ·)|K̃ ∈ Ck+1(K̃;Rd) and is invertible onto its image for

each K̃ ∈ J̃ h. Moreover, define the following:

FK(t)(·) := Φh
i (t;FK̃(·)),

K(t) := FK(t)(K̃),

P k(t) := {χk ◦ F−1
K(t) : χk ∈ P̂ k},

Σk(t) := {χ 7→ σ(χ ◦ FK(t)) : σ ∈ Σ̂k},

then the triplet (K(t), P k(t),Σk(t)) with reference map FK(t) defines a bulk evolving finite element triplet.

Let J h
i (t) = {Φh

i (t; K̃i), K̃i ∈ J h
i }, J h

Γ (t) = {Φh
1 (t;E), E ∈ J h

Γ } and J h(t) = J h
1 (t) ∪ J h

2 (t), then
{J h

1 (t),J h
2 (t),J h(t)} are evolving conforming admissible sub-divisions (see [22, Def. 4.32]). Further-

more, let:

Ωh
i (t) =

⋃
Ki(t)∈J h

i (t)

Ki(t), Ω
h(t) =

⋃
K∈J h

K(t), Γh(t) =
⋃

E∈J h
Γ

E = Ωh
1 (t) ∩ Ωh

2 (t),

then (Ωh
1 (t),Ω

h
2 (t)) define triangulated bulk domains approximating (Ω1(t),Ω2(t)), Γ

h(t) is a triangulated
hypersurface approximating Γh(t), and Ωh(t) defines a triangulated bulk domain that is an exact partition
of Ω

Proof. The proof follows the same way as Lem. 3.2. □

For each K(t) ∈ J h(t), let hK(t) be the diameter of the flat simplex whose vertices match K(t). We
define h := maxt∈I maxK(t)∈J h(t) diam(K(t)) to be the maximum mesh diameter, where diam(K(t)) is
the diameter of the affine element whose vertices match K(t) (see [22, Lem. 4.9]).

Remark 3.5. This allows us to move the Lagrangian nodes via αj
Ki(t)

= Φh
i (t;α

j
Ki

). The Lagrangian

interpolation operator, Ih|K(t), is then defined in the canonical way. Moreover for x ∈ Ki(0):

∂tΦ
h
i (t;x) =

∑
{j:χ̃j∈P̃k}

∂tΦi(t;Ψ
h(αj

K̃i
))χ̃j(x) =

∑
{j: χ̃j∈P̃k}

w(t;Φi ◦Ψh(αj

K̃i
))χ̃j(x)

=
∑

{j:χj∈Pk(t)}

w(t;αj
Ki(t)

)χj(t;Φh
i (t;x)) =: wh(t;Φh

i (t;x)),

where one sees that wh is the interpolated velocity with respect to the moving nodes:

wh(t; ·)|Ki(t) = Ih|Ki(t)[w(t; ·)]. (3.4)
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Hence, element-wise, the discrete flow satisfies ODE:

d

dt
Φh

i (t;x) = wh(t;Φh
i (t;x)), x ∈ Ki(0), (3.5)

Φh
i (0;x) = x,

and therefore satisfies the composition property Φh
i (t+ s; ·) = Φh

i (t;Φ
h
i (s; ·)), see [30].

It will be assumed that the mesh remains uniformly quasi-uniform in time, see [22, Def. 4.35] as the
discrete flow Φh can deform the mesh significantly. An example of the temporal deformation of an
evolving element is shown in Fig. 3.3. Despite interior elements of the initial partition being linear, since
the velocity used to displace the elements is a polynomial interpolant of the velocity, the resulting element
might not remain linear and can be deformed. An alternative construction, for which interior elements
remain affine, is given in [36].

K(0) K(t)

Φh(t; ·)

Figure 3.3. Example of the temporal deformation of an interior element in three space
dimensions.

The Broken Sobolev space is defined as follows:

W 1,p
T (J h

i (t)) = {η ∈ L1(Ωh
i (t)), η|Ki(t) ∈W 1,p(Ki(t)) ∀Ki(t) ∈ J h

i (t),

η|∂Ki(t) = η|∂K′
i(t)

∀K ′
i(t) ∈ J h

i (t) s.t K
′
i(t) ∩Ki(t) ̸= ∅},

equipped with the Broken Sobolev norm:

∥ηh∥p
W 1,p(J h

i (t))
:=

∑
Ki(t)∈J h

i (t)

∥ηh∥pW 1,p(Ki(t))
, ∥ηh∥W 1,∞(J h

i (t)) := max
K(t)∈J h

∥η∥W 1,∞(K(t)).

Remark 3.6. The space W 1,p
T (J h

i (t)) is indeed a Banach space see [22, Lem. 4.19].

The discrete spaces are then defined as:

Hh(t) := L2(Ωh
1 (t))× L2(Ωh

2 (t)),

V h(t) := {ηh ∈W 1,2
T (J h

1 (t))×W 1,2
T (J h

2 (t)), η
h
1 − ηh2 |Γh(t) = 0, and ηh2 |∂Ωh = 0},

equipped with the norms:

∥ · ∥2V h(t) :=

2∑
i=1

∥ · ∥2W 1,2(J h
i (t)), ∥ · ∥2Hh(t) :=

2∑
i=1

∥ · ∥2L2(Ωh
i (t))

.

Define the map ϕht : Hh(0) → Hh(t) element-wise as:

(ϕht v
h)(x1, x2) := (vh1 (Φ

h
1 (−t;x1)), vh2 (Φh

2 (−t;x2))) for (x1, x2) ∈ K1(t)×K2(t) ⊂ Ωh
1 (t)× Ωh

2 (t).

16
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That is

(ϕht v
h)(x1, x2) := (vh1 (y1), v

h
2 (y2)) for yi ∈ Ki(0), yi = Φh

i (−t;xi), xi ∈ Ki(t).

Lemma 3.7. (V h(t), ϕht )t∈I and (Hh(t), ϕht )t∈I , are compatible pairs.

Proof. This follows by the regularity of the map Φh and J h(t), see [22, Lem. 4.36]. □

Hence the moving spaces L2
V h and L2

Hh are well defined. Denote the discrete material derivative by:

∂ht η := ϕht
∂

∂t
ϕh−tη, (3.6)

for η ∈ C1
Hh . The bilinear form λh(t; ·, ·) of Def. 2.3 associated with this material derivative is:

λh(t; ηh, vh) = (∇ ·whηh, vh)Hh(t),

where wh is the previously defined discrete velocity from Sec. 3.2 (see [22, Lem. 8.10] for derivation).
This allows us to define, just as before, the discrete space:

W (V h, V h) =
{
vh ∈ L2

V h , ∂
h
t vh ∈ L2

V h

}
.

3.3. The lift. The last mesh related concept needed is the lift map (see [22, Sec. 8.6]). Fix t ∈ I, if
K(t) ∈ J h(t) is an interior element, then define the lift Λh(t; ·) as:

Λh(t;x) = x, for x ∈ K(t).

If instead K(t) is an interface element, we first pull-back the reference map to x̂ ∈ K̂ref such that

x = FK(t)(x̂), then decomposing x̂ into barycentric coordinates with respect to the vertices âjKref
of K̂ref,

we have:

x̂ =

d+1∑
j=1

µj(x̂)â
j
Kref

,

and once again, let LK be the number of vertices on the interface and assume the vertices are ordered
so that âjKref

, j = 1, . . . , LK , get mapped on to Γ(t), then we introduce the interface distance and the
singular set analogously:

µ̃(x̂) =

LK∑
j=1

µj(x̂), σ = {x̂ ∈ K̂ref| µ̃(x̂) = 0}.

The projection is now defined on the reference element:

ŷ(x̂) =

LK∑
j=1

µi(x̂)

µ̃(x̂)
, y(t;x) := FK(t)(ŷ(x̂)).

Hence the lift operator can now be defined on interface elements as:

Λh(t;x)|K(t) =

{
x+ (µ̃(x̂))k+2(Πt(y(t;x))− y(t;x)) if x̂ /∈ σ,

x otherwise.

Then, computing component wise, we see:

∂ht Λ
h(t;x)|K(t) =

{
wh(t;x) + ∂ht [(µ̃(x̂))

k+2(Πt(y(t;x))− y(t;x))] if x̂ /∈ σ,

wh(t;x) otherwise.
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Let z = Φh
i (−t;x) (depending on whether x ∈ Ωh

i (t), we also use the shorthand Φ−t(x) = Φh
i (−t;x) and

Φt(z) = Φh
i (t; z), depending on whether z ∈ Ωh

i (0)):

∂ht [(µ̃(x̂))
k+2(Πt(y(t;x))− y(t;x))] = ϕht

d

dt
[(µ̃(F−1

K̂
z))k+2(Πt(y(t;Φ

h
t (z))− y(t;Φh

t (z))],

= µ̃(x̂)k+2ϕht
d

dt
[Πt(y(t;Φ

h
t (z)))− y(t;Φh

t (z))],

= µ̃(x̂)k+2
[
∂tΠt(y(t;x)) + ∂ht y(t;x) · [∇Πt(y(t;x))]− ∂ht y(t;x)

]
.

The formula for ∂ht y(t;x) can also be explicitly found:

∂ht y(t;x) = ϕht
d

dt
FK(t)(ỹ(t;F

−1

K̂
z)) = ϕht w

h(t;FK(t)ỹ(t;F
−1

K̂
z)) = wh(t; y(t;x)),

by use of (3.3) and the definition of FK(t). Hence:

∂ht Λ
h(t;x)|K(t) (3.7)

=

{
wh(t;x) + µ̃(x̂)k+2

[
∂tΠt(y) +wh(t; y) · [∇Πt(y)]−wh(t; y)

]
ifx /∈ σ

wh(t;x) otherwise

=

{
wh(t;x)− µ̃(x̂)k+2

[(
wh(t; y)−w(t; Πt(y))

)
· νΓ(Πt(y))νΓ(Πt(y)) + dΓ(t; y)T (y)

]
ifx /∈ σ,

wh(t;x) otherwise,

with T (x) := ∂t[νΓ(Πt(x))] +wh(t;x) · ∇[νΓ(Πt(x))]. We have used the tubular neighbourhood decom-
position (2.4) and the following formulae:

∂tdΓ(t;x) = −w(t; Πt(x)) · νΓ(Πt(x)), ∇dΓ(t;x) = νΓ(Πt(x)), x ∈ NΓ,

see [34, Sec. 2]. This gives us the following lemma:

Lemma 3.8. For h small enough, the map Λh(t; ·)|Ki(t) is a Ck+1(Ki(t);Rd) element-wise diffeomor-

phism with image Λh(t; Ωh
i (t)) = Ωi(t). Moreover, define the following:

J l
i (t) := {Λh(t;Ki(t))| Ki(t) ∈ J h

i (t)}, J l(t) := J l
1(t) ∪ J l

2(t).

Then J l
1(t),J l

2(t),J l(t) define a uniform k-regular evolving subdivision of Ω1(t),Ω2(t),Ω, respectively.

This follows from [22, Lem. 8.12] and the fact that facets are mapped to their evolving equivalent can be
shown in the exact same way as in Lem. 3.2. A chart representing the full set-up is given in Fig. 3.4.

For a function vh ∈ Hh(t), the lift is denoted by (·)l : Hh(t) → H(t) and defined as follows:

vh,l(x) :=
(
vh1

(
t; [Λh(t;x)]−1

)
, vh2

(
t; [Λh(t;x)]−1

))
.

Its inverse will be labelled by (·)−l, i.e (vh,l)−l = vh. Since Λh(t; ·)|
Ω

h
i (t)

∈ W k+1,∞
T (J h

i (t);Rd), with

norm uniformly bounded in h, and invertible, via a similar change of variable method as Lem. 2.12 we
have:

c1∥vh,l∥H(t) ≤ ∥vh∥Hh(t) ≤ c2∥vh,l∥H(t) for vh ∈ Hh(t)

c1∥vh,l∥V (t) ≤ ∥vh∥V h(t) ≤ c2∥vh,l∥V (t) for vh ∈ V h(t).

We define the analogous flowΦl
t : Ωi(0) → Ωi(t) defined via the equation: Φl

i(t; Λ
h(0;x)) = Λh(t;Φh

i (t;x)).
By the invertibility of Λl, this defines a flow, for which we can associate a push-forward map ϕlt and in-
verse ϕl−t as before. Note that this flow satisfies all properties B1 to B3 and D1 to D3 on the triplet
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V (t) ⊂ H(t) ⊂ V ∗(t) and therefore can be equipped with its own material derivative ∂lt:

∂ltζ := ϕlt
∂

∂t
ϕl−tζ,

for ζ ∈ C1
(H,ϕl

t)
(we make the flow ϕht explicit in the label for the space C1

(H,ϕl
t)
, so as to distinguish the

space from C1
H). Moreover, it is shown in [22, Lem. 3.5]:

∂ltη
h,l = (∂ht η

h)l, (3.8)

for ηh ∈ C1
Hh .

3.4. Finite Element Spaces. Let α(t) be a Lagrangian node and Ji(α(t)) be the set of elements in
Ki(t) ∈ Ji(t) such that α(t) ∈ Ki(t), and let N h

i (t) be the global set of all Lagrangian nodes in J h
i (t).

We introduce the finite dimensional subspace:

Sh
i (t) :=

{
χh
i = (χh

i )Ki(t)∈J h
i (t) ∈

∏
Ki(t)∈J h

i (t)

{χ̂ ◦ F−1
Ki(t)

: χ̂ ∈ P̂k} :

χh
i |K(α(t)) = χh

i |K′(α(t)) for allKi(t),K
′
i(t) ∈ Ji(α(t)),∀α(t) ∈ N h

i (t)

}
.

Combining two copies of the space yields the adequate solution space:

Sh(t) :=
{
ηh = (ηh1 , η

h
2 ) ∈ Sh

1 (t)× Sh
2 (t)| χh

1 (α(t)) = χh
2 (α(t))

for all α(t) ∈ Γh(t) ∩N h
1 (t) and χ

h
2 (α(t)) = 0 ∀α(t) ∈ ∂Ω ∩N h

2 (t)
}
,

and we equip Sh(t) with the same norm as V h(t).

Lemma 3.9. (Sh(t), ϕht )|t∈I form a compatible pair.

Proof. Since both the Lagrangian nodes and polynomials are evolved via Φh
t , one has by the definition

of S(t), ϕt(S(0)) = S(t). Showing the remaining criterion for compatibility can be done in the same way
as in Lem. 2.12. □

Hence the moving spaces L2
Sh is well defined.

The lifted solution space can now be defined as:

Sl(t) := {χh,l| χh ∈ Sh(t)}.

The interpolation operator onto Sl(t), I l : C(Ω) → Sl(t) can also be defined in a similar way:

I l(η)|K(t) :=
∑

{j:χj∈Pk(t)}

η(αj,l
K(t))χ

j,l.

where {αj,l
K(t)}

N(k)
j=1 are the lifted Lagrangian Nodes.

The following variant of the approximation lemma holds:

Lemma 3.10 ([22], Lem. 8.21). We have the estimates:

∥w − I lw∥H(t) + h∥w − I lw∥V (t) ≤ chk+1∥w∥Zk(t), for w ∈ Zk(t),

∥w − I lw∥H(t) + h∥w − I lw∥V (t) ≤ ch2∥w∥Z1(t), for w ∈ Z1(t).
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Initial linear

meshes :

Initial isoparametric

meshes :

Evolved Domain:
Evolved isoparametric

meshes :

Initial domain :

Figure 3.4. Schematic of the setup used. Λh(t;x) might be needed, depending on the
problem, to define the discrete data. However once the discrete problem is known, only
the knowledge of Ωh

i (0), Γ
h(0) and Φh(t; ·) are needed to calculate the discrete solution

Uh(t; ·). Φl is only needed in the analysis of theoretical error estimates.

4. Evolving finite element method

4.1. Scheme. For any Uh, ζh ∈ V h(t), let:

mh(t;Uh, ζh) :=

2∑
i=1

∫
Ωh

i (t)

Uh
i ζ

h
i ,

ah(t;Uh, ζh) :=

2∑
i=1

∫
Ωh

i (t)

Ai(t; Λ
h
l (t;x))∇Uh

i · ∇ζhi + [B(t; Λh
l (t;x))−wh] · ∇Uh ζh

+ [C(t; Λh
l (t;x))−∇ ·wh(t;x)]Uh ζh,

lh(t; ζh) := (f−lJh, ζh)Hh(t) + (g−lµh, ζh)L2(Γh(t)),

where Jh, µh are the discrete Jacobians with respect to the lift maps Λh(t;x)|Γh(t), and by regularity of

Λh, are of class Ck(Ki(t);Rd), Ck(E(t);Rd), ∀Ki(t) ∈ J h
i (t), ∀E(t) ∈ J h

Γ (t), respectively.

The finite element method is to find Uh(t) ∈ Sh(t) satisfying the discrete variational problem:

mh(t; ∂ht U
h, ζh) + ah(t;Uh, ζh) + λh(t;Uh, ζh) = lh(t; ζh) ∀ζh ∈ L2

Sh ,∀t ∈ I, (4.1)

Uh(0) = Uh
0 :=

dim(Sh)∑
j=1

(u0, χ
h
j )H(0)χ

h
j .

Remark 4.1. It might not be practical to calculate lh(t; ·) for an arbitrary pair (f, g) ∈ L2
H × L2

VΓ
as it

would have to be calculated via numerical integration. We will assume for the rest of the paper that it
is possible to calculate these integrals exactly. See [14] for numerical integration on curved domains.

This formulation can be rearranged to a more useful form via the transport theorem with respect to the
form mh(t; ·, ·):

d

dt
mh(t;Uh, ζh)−mh(t;Uh, ∂ht ζ

h) + ah(t;Uh, ζh) = lh(t; ζh), (4.2)
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for ζh ∈ C1
Sh . Moreover, by construction of the lh(t; ·) term, for a function ηh ∈ Hh(t):

l(t; ηh,l) = lh(t; ηh).

4.2. Well posedness of the finite element scheme.

Theorem 4.2. There exists a unique solution to (4.1) with continuous bound:

sup
t∈I

∥Uh∥2Hh(t) +

∫ T

0

∥Uh∥2V h(t) ≤ C(T )

(
∥Uh

0 ∥2Hh(0) + ∥f∥L2
H
+ ∥g∥L2

V∗
Γ

)
.

Proof. Substituting the Ansatz:

Uh(t;x) =

dim(Sh)∑
j=1

αj(t)χ
h
j (t;x),

where {χh
j (t;x)}

dim(Sh)
j=1 are the basis functions of the evolving solution space L2

Sh . We refer to [22,

Lem. 3.1] for proof of the transport property :

∂ht χ
h
j = 0 ∀j ∈ 1, ...., N(k).

Then the problem can be restated as the finite dimensional problem:

d

dt

(
M(t)α(t)

)
+A(t)α(t) = L(t)

α(0) = α0

where:

α(t) = (α1(t), . . . , αN(k)(t)), [M(t)]j,k = mh(t;χh
j , χ

h
k),

[A(t)]j,k = ah(t;χh
j , χ

h
k), L(t) = (lh(t;χh

1 ), ...., l
h(t;χh

N(k))).

Note that M(t) is a Gram matrix (and hence invertible). Hence, by use of standard ODE theory (see
[46, Sec. 1.6]), there exists a solution α(t) ∈ W1,1(R;RN(k)). The uniform bound and uniqueness follows
from testing with Uh and using the transport theorem. □

5. Error bound

The main result of this article is the following optimal order error bound.

Theorem 5.1. If the solution to (4.1) is of regularity u ∈W (Zk, Zk) ∩ L∞
Zk

with uniform bound:

∥u∥L∞
Zk

+ ∥u∥W (Zk,Zk) ≤ Cu,

then there exists a constant C depending on Cu such that the following holds:

sup
t∈I

∥u− Uh,l∥2H(t) + h2
∫ T

0

∥u− Uh,l∥2V (t) ≤ c∥u0 − uh,l0 ∥2H(0) + ch2k+2(C).

Note that under the assumption of there existing a moving space equivalence on W (Zk, Zk), u ∈ L∞
Zk

automatically (see Lem. 2.7) and hence it only suffices to assume u ∈W (Zk, Zk). In the next section we
set out preliminary approximation results and then prove the error bound in the subsequent section.

In the next two subsections we introduce necessary tools from [22, Sec. 3.3] in order to obtain suitable
orders of convergence. We will assume that for each space W (Zk, Zk), there exists a moving space
equivalence with W(Zk(0), Zk(0)), see Def. 2.5. This only requires the flow map Φt to be regular enough
and in particular in guaranteed if Φt is smooth.
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5.1. Geometric perturbations. Let:

bl(t;w, v) :=
d

dt
[a(t;w, v)]− a(t; ∂ltw, v)− a(t;w, ∂ltv), w, v ∈W (V, V ),

bh(t;wh, vh) :=
d

dt
[ah(t;wh, vh)]− a(t; ∂ht w

h, vh)− a(t;wh, ∂ltv
h), wh, vh ∈W (V h, V h),

a.e for t ∈ I. Similarly as (2.11), these bilinear forms can be calculated explicitly and satisfy:

|bl(t;w, v)| ≤ c∥w∥V (t)∥v∥V (t), |bh(t;wh, vh)| ≤ c∥wh∥V (t)∥vh∥V (t), ∀v, w ∈ V (t), ∀vh, wh ∈ V h(t),

for some constant c independent of t and h. Define λl(t; ·, ·) to be the bilinear form of Def. 2.3 with
respect to the flow Φl, which can be calculated to be:

λl(t; v, w) =

2∑
i=1

∫
Ωi(t)

∇ · w̃v w, (5.1)

where w̃ is defined as:

w̃(t;x) =
∂

∂t
Φl(t; y)|y=Φl(−t;x). (5.2)

See [22, Lem. 8.15].

Lemma 5.2 ([22], Lem. 8.16). The lift satisfies the following:

sup
t∈I

∥∇Λh(t; ·)− I∥L∞(Ωh
i (t))

≤ chk,

sup
t∈I

∥∂ht ∇Λh(t; ·)∥L∞(Ωh
i (t))

≤ chk,

and the Jacobian Jh :=
√
det [∇Λh]T∇Λh satisfies:

sup
t∈I

∥Jh(t; ·)− 1∥L∞(Ωh
i (t))

≤ chk.

Then the following holds for the bilinear forms introduced in (2.9) and (2.11):

Proposition 5.3. There exists a constant c > 0 such that for almost all t ∈ I and for all wh, vh ∈ V h(t),
wh,l, vh,l ∈ V (t) the following error bounds hold:

|m(t;wh,l, vh,l)−mh(t;wh, vh)| ≤ chk+1∥wh,l∥V (t)∥vh,l∥V (t), (P1)

|λ(t;wh,l, vh,l)− λh(t;wh, vh)| ≤ chk+1∥wh,l∥V (t)∥vh,l∥V (t), (P2)

|λl(t;wh,l, vh,l)− λ(t;wh,l, vh,l)| ≤ chk∥wh,l∥V (t)∥vh,l∥V (t), (P3)

|a(t;wh,l, vh,l)− ah(t;wh, vh)| ≤ chk∥wh,l∥V (t)∥vh,l∥V (t), (P4)

|bl(t;wh,l, vh,l)− bh(t;wh, vh)| ≤ chk∥wh,l∥V (t)∥vh,l∥V (t), (P5)

|bl(t;wh,l, vh,l)− b(t;wh,l, vh,l)| ≤ chk∥wh,l∥V (t)∥vh,l∥V (t). (P6)

For η, ζ ∈ Z1(t) with inverse lifts η−l, ζ−l:

|a(t; η, ζ)− ah(t; η−l, ζ−l)| ≤ chk+1∥η∥Z1(t)∥ζ∥Z1(t), (P4’)

|bl(t; η, ζ)− bh(t; η−l, ζ−l)| ≤ chk+1∥η∥Zk(t)∥ζ∥Zk(t). (P5’)

For η ∈ C1
Zk

and ζ ∈ Z1(t), with inverse lifts η−l and ζ−l:

|a(t; ∂ltη, ζ)− ah(t; ∂ht η
−l, ζ−l)| ≤ chk+1(∥η∥Z1(t) + ∥∂•t η∥Z1(t))∥ζ∥Z1(t). (P7)
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The material derivatives satisfy

∥∂ltζ − ∂•t ζ∥H(t) ≤ chk+1∥ζ∥V (t) for ζ ∈ C1
V , (P8)

∥∂ltζ − ∂•t ζ∥V (t) ≤ chk∥ζ∥Z1(t) for ζ ∈ C1
Z1
. (P9)

Proof. In [22, Lem. 8.23 and 8.24], these estimates are proven on a single evolving domain Ω(t) with
V (t) = H1(Ω(t)). However, almost the same arguments cover our case. We will only show this for
(P1),(P4) and (P9), but the same method can be applied for the remaining claims.

(P1): Let Jh :=
√
det [∇Λh]T∇Λh be Jacobian resulting from switching from Ωi(t) to Ωh

i (t). Then, the
lift itself differs from the identity only when x is in an interface element: let

M := {x ∈ Ωh
i (t) : J

h(x) ̸= 1} ⊂ {x ∈ Ωi(t) : |dΓ(t;x)| ≤ h},

and let M l := {Λh(t;x)| x ∈M} ⊂ {x ∈ Ωi(t) : |dΓ(t;x)| ≤ h}. For wh
i ∈ H1(Ωi(t)):∣∣∣∣∣

∫
Ωi(t)

wh,l
i · vh,li −

∫
Ωh

i (t)

wh
i · vhi

∣∣∣∣∣ =
∣∣∣∣∫

M

wh
i · vhi [Jh − 1]

∣∣∣∣ ≤ chk∥wh,l
i ∥L2(M l)∥v

h,l
i ∥L2(M l).

Then, via the Narrow-Band trace inequality, see [21, Lem. 4.10], we see:

∥wh,l
i ∥L2(M l) ≤ ch1/2∥wh,l

i ∥H1(Ωi(t)),

and hence:

|m(t;wh,l, vh,l)−mh(t;wh, vh)| =

∣∣∣∣∣
2∑

i=1

∫
Ωi(t)

wh,l
i · vh,li −

∫
Ωh

i (t)

wh
i · vhi

∣∣∣∣∣ ,
≤ chk+1

2∑
i=1

∥wh,l∥H1(Ωi(t))∥v
h,l∥H1(Ωi(t)),

≤ chk+1∥wh,l∥V (t)∥vh,l∥V (t).

(P4): Domain-wise (using the shorthand Λh(t;x) = Λh):∫
Ωi(t)

Ai(t;x)∇wh,l
i · ∇vh,li + [Bi(t;x)−w] · ∇wh,l

i vh,li + [Ci(t;x)−∇ ·w]wh,l
i vh,li

=

∫
Ωh

i (t)

[Ai(t; Λ
h)∇Λh∇wh

i · ∇Λh∇vhi + [Bi(t; Λ
h)−w(t; Λh)] · ∇Λh∇wh

i v
h
i

+ [Ci(t; Λh)− Tr(∇Λh∇w)]wh
i v

h
i ]J

h.

By use of both Lem. 3.10 and 5.2, P4 follows in the same way as (P1).

(P9): Explicitly expanding both material derivatives:

∂•t ζ = ∂tζ +w · ∇ζ = ∂ltζ + [w − w̃] · ∇ζ. (5.3)

Using the definition of Φl
t and (5.2), element-wise, for x ∈ K(t):

∂ht Λ
h(t;x) = ϕht ∂tΛ

h(t;Φh(t;x)) = ϕht ∂tΦ
l(t; Λh(0;x)) = ϕht w̃(t;Φl(t; Λh(0;x))) = w̃(t; Λh(t;x)).

Rewriting (5.3):

∂•t ζ − ∂ltζ = [w − ∂ht Λ
h(t; z)|z=[Λh(t;x)]−1 ] · ∇ζ,

= [w − I lw + I lw − ∂ht Λ
h(t; z)|z=[Λh(t;x)]−1 ] · ∇ζ, (5.4)
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via Lem. 3.10:

∥w − I lw∥V (t) ≤ chk∥w∥Zk(t), (5.5)

as for the remaining term, ∂ht Λ
h(t; y), using (3.7):

I lw − ∂ht Λ
h(t; z)|z=[Λh(t;x)]−1 = [wh(t; z)− ∂ht Λ

h(t; z)]z=[Λh(t;x)]−1

=

{
−µ̃(x̂)k+2

[(
wh(t; y)−w(t; Πt(y))

)
· νΓ(Πt(y))νΓ(Πt(y))− dΓ(t; y)T (y)

]
ifx /∈ σ,

0 otherwise.

Via the use of standard geometric estimates, see [22, Lem. 8.16 and 9.10] and the fact that wh is the
interpolant of w, we infer that:

∥wh(t; z)− ∂ht Λ
h(t; z)∥W 1,∞(K(t)) ≤ chk. (5.6)

Combining (5.4) to (5.6) yields (P9). □

5.2. Ritz Projection. We set

aκ(t;w, v) := κm(t;w, v) + a(t;w, v) (5.7)

and observe that

aκ(t; v, v) ≥
(
γ −

ϵ∥Bi −w∥L∞(Ω)

2

)
∥∇v∥2H(t)

+

(
κ− ∥∇ ·w∥L∞(Ω) − ∥Ci∥L∞(Ω) −

∥Bi −w∥L∞(Ω)

2ϵ

)
∥v∥2H(t),

where γ is a lower bound for the eigenvalues of Ai (2.10). Thus taking ϵ sufficiently small and κ sufficiently
large, we may choose κ depending only on the data to ensure that the bounded bilinear form aκ(t; ·, ·) is
strictly coercive.

Similarly, we define

ahκ(t;wh, vh) := κmh(t;wh, vh) + ah(t;wh, vh),

which is also coercive provided κ is large enough, independently of h, by the same argument.

The Ritz projection Πh : V (t) → Sh(t) is defined as the solution to:

ahκ(t; Π
h(η), vh) = aκ(t; η, v

h,l) ∀vh ∈ Sh(t), (5.8)

and πhη := (Πhη)l. By the coercivity and boundedness of ahκ, this gives us a uniformly bounded and
linear operator Πh : V (t) → Sh(t). Moreover, it is further proven in [22, Lem. 3.9] , that Πhη ∈ C1

Sh if

η ∈ C1
V and it follows by use of the same method that Πhη ∈ C0

Sh if η ∈ C0
V .

Lemma 5.4. The Ritz projection can be extended as a continuous linear operator Πh(·) : L2
V → L2

Sh .

Moreover, if η ∈ W (V, V ), then Πh(η) ∈ W (Sh,Sh) = {vh ∈ L2
Sh , ∂ht v

h ∈ L2
Sh}. In particular,

Πh(·) :W (V, V ) →W (Sh,Sh) is linear and bounded uniformly in h.

Proof. Integrating (5.8), we see, that for all vh ∈ L2
Sh :∫ T

0

ahκ(t; Π
h(η), vh) dt =

∫ T

0

aκ(t; η, v
h,l) dt.
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By point-wise coercivity in time of ahκ, we also get the coercivity over L2
Sh . Since L

2
Sh is a closed subspace

of a Hilbert space, and
∫ T

0
aκ(t; η, (·)l) dt defines a bounded linear functional on L2

Sh , via the standard

use of Lax-Milgram, there exists a unique solution, labelled Πh(η) and we achieve the bound:

∥Πh(η)∥L2

Sh
≤ sup

vh∈L2

Sh , ∥vh∥=1

∫ T

0

aκ(t; η, v
h,l) dt ≤ c∥η∥L2

V
. (5.9)

Hence Πh(·) is continuous. Note that the bound in (5.9) can be taken to be independent of h, this is due
to the fact that both the bilinear form aκ and the lift map (·)l are both bounded independently of h.

To show the second claim, assume η ∈W (V, V ) and set ζ as the solution to:∫ T

0

ahκ(t; ζ, v
h) dt =

∫ T

0

aκ(t; ∂
l
tη, v

h,l)− bhκ(t; Π
hη, , vh) + blκ(t; η, v

h,l) dt, ∀vh ∈ L2
Sh . (5.10)

The via the same argument as before, there exists a unique ζ ∈ L2
Sh solving (5.10) with bound:

∥ζ∥L2

Sh
≤ c∥η∥W (V,V ), (5.11)

and similarly as before, the bound in equation (5.11) is independent of h. Since η ∈ W (V, V ), it is also
in C0

V by Lem. 2.7, η ∈ C0
V and therefore Π(η) ∈ C0

Sh .

Define:

wh := ϕht

∫ t

0

ϕh−sζ(s) ds+ ϕht Π
h(η)(0).

Via the isomorphism lemma (Lem. 2.2), ϕh−sζ(s) ∈ L2(I;Sh(0)), the standard Bochner space and therefore

is Bochner integrable. Since Sh(0) is a closed linear subspace, the definite Bochner integral of a function
inside Sh(0) remains in Sh(0) for all t ∈ I. Using the isomorphism again, we see that wh ∈ L2

Sh . We

will show that wh = Πhη which will show the second claim. Indeed, wh ∈ W (Sh,Sh) with ∂ht w
h = ζ.

Substituting this back into (5.10):∫ T

0

ahκ(t; ∂
h
t w, v

h) dt =

∫ T

0

aκ(t; ∂
l
tη, v

h,l)− bhκ(t; Π
hη, , vh) + blκ(t; η, v

h,l) dt, ∀vh ∈ L2
Sh , (5.12)

using the definition of bhκ, we see that, for vh ∈ W(Sh,Sh) with vh(0) = vh(T ) = 0:∫ T

0

ahκ(t; ∂
h
t w

h, vh) dt =

∫ T

0

−bhκ(t;wh, vh)− ahκ(t;w
h, ∂ht v

h) dt,∫ T

0

aκ(t; ∂
l
tη, v

h,l) dt =

∫ T

0

−blκ(t; η, vh,l)− aκ(t; η, [∂
h
t v

h]l) dt,

using the commutation properties of the material derivatives ∂ht and ∂lt (see (3.8)). Substituting these
expression back into (5.12):∫ T

0

aκ(t; η, [∂
h
t v

h]l)− ahκ(t;w
h, ∂ht v

h) dt =

∫ T

0

bhκ(t;w
h −Πhη, vh) dt. (5.13)

Using the definition or the Ritz projection (5.8), we arrive at:∫ T

0

ahκ(t; Π
hη − wh, ∂ht v

h) dt =

∫ T

0

bhκ(t;w
h −Πhη, vh) dt. (5.14)

Testing this equation with vh(t) = φ(t)ψh(t) with φ(t) ∈ D(I) and ψh(t) ∈W (Sh,Sh), we see:∫ T

0

φ(t)ahκ(t; Π
hη − wh, ∂ht ψ

h) + φ′(t)ahκ(t; Π
hη − wh, ψh) dt =

∫ T

0

φ(t)bhκ(t;w
h −Πhη, ψh) dt.

25



ESFEM PARABOLIC TRANSMISSION C.M. ELLIOTT, T. RANNER, AND P. STEPANOV

Then, via the fundamental lemma of variational calculus, see [33, Thm. 1.2.1 and Lem. 1.2.1], and the
fact that ahκ(t; Π

hη − wh, ψh) is continuous as Πh(η)− wh, ψh ∈ C0
Sh , we get that for all t ∈ I:

ahκ(t; Π
hη − wh, ψh) =

∫ t

0

bhκ(s; Π
hη − wh, ψh) + ahκ(s; Π

hη − wh, ∂hs ψ
h) ds (5.15)

Fix t ∈ I and test with ψh(s) = ϕhsϕ
h
−t(Π

hη−wh), we see that ∂hs ψ
h(s) = 0 and hence, via the coercivity

of ak and compatibility:

∥Πhη − wh∥2Sh(t) ≤ c

∫ t

0

bhκ(s; Π
hη − wh, ψh) ds,

≤ c

∫ t

0

∥Πhη − wh∥Sh(s)∥Πhη − wh∥Sh(t) ds.

By use of Young’s inequality:

∥Πhη − wh∥2Sh(t) ≤ c

∫ t

0

∥Πhη − wh∥2Sh(s) ds.

This holds for arbitrary point t ∈ I and hence can be repeated to see that this holds for all of I. By use
of Grönwall’s inequality it must be that:

∥Πhη − wh∥2Sh(t) = 0,

and hence Πhη = wh and therefore Πhη ∈ W (Sh,Sh). As for the bound on Πhη, we see that, since
∂ht w

h = ∂ht Π
h(η) = ζ, using (5.9) and (5.11) we see that ∥Πh(η)∥W (Sh,Sh) ≤ c∥η∥W (V,V ) independently

of h. □

Note that aκ(t; ·, ·) and ahκ(t; ·, ·) satisfy all the same estimates as a(t; ·, ·) and ah(t; ·, ·) in (P1)–(P9).

Remark 5.5. We note that via the commutative properties of the material derivatives (see (3.8))
[∂ht Π

h(v)]l = ∂ltπ
h(v) for v ∈W (V, V ). Hence we also conclude that the lifted Ritz map πh :W (V, V ) →

W (Sl
h,Sl

h) is continuous as well, again uniformly in h.

Define the dual solution operators RH : H(t) → V (t) and RHΓ
: HΓ(t) → V (t) to be the solutions to:

aκ(t;w,RH(v)) = m(t;w, v) ∀w ∈ V (t) (5.16)

aκ(t;w,RHΓ
(v)) = (w, v)HΓ(t) ∀w ∈ V (t). (5.17)

HΓ(t),VΓ(t) are defined in Sec. 2.2. We aim to show that these operators satisfies the following regularity
condition:

Lemma 5.6. Assuming additional regularity on the data: Ai ∈W 1,∞(Ωi(t);Rd×d), Bi ∈W 1,∞(Ωi(t);Rd),
Ci ∈W 1,∞(Ωi(t);R), the operators RH , RHΓ

satisfy the regularity bounds:

∥RH(v)∥Z1(t) ≤ c∥v∥H(t) (5.18)

∥RHΓ(v)∥Z1(t) ≤ c∥v∥HΓ(t). (5.19)

Proof. Writing (5.16) explicitly, we seek a solution RH(v) to:

2∑
i=1

∫
Ωi(t)

Ai∇wi · ∇RH(v) + [Bi −w] · ∇wiRH(v) + [Ci + κ−∇ ·w]wiRH(v) = m(t;w, v). (5.20)
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We note, by increasing κ more if needs be, (5.20) is still coercive. Hence there exists a solution RH(v) ∈
V (t) via use of the Babuska-Lax-Milgram theorem. Moreover, there exists a constant c independent of
time such that:

∥RH(v)∥V (t) ≤ c∥v∥H(t).

To show the additional regularity, rearranging (5.20), we have:

aκ(t;w,RH(v)) = aκ(t;RH(v), w) +

2∑
i=1

∫
Ωi(t)

[Bi −w] · ([∇wi]RH(v)− [∇RH(v)]wi). (5.21)

The remaining term of (5.20) can be further rearranged as, using integration by parts and the continuity
of V (t) and w across the interface:

2∑
i=1

∫
Ωi(t)

[Bi −w] · ([∇wi]RH(v)− [∇RH(v)]wi)

=

∫
Γ(t)

JBK · νwRH(v)−
2∑

i=1

∫
Ωi(t)

2[Bi −w] · [∇RH(v)]wi +∇ · [Bi −w]RH(v)wi.

Hence, the solution to (5.16) also solves:

aκ(t;RH(v), w) = m(t;w, v)−
∫
Γ(t)

JBK · νwRH(v)

+

2∑
i=1

∫
Ωi(t)

2[Bi −w] · [∇RH(v)]wi +∇ · [Bi −w]RH(v)wi, ∀w ∈ V (t). (5.22)

Set L(v) to be the solution to:

aκ(t;L(v), w) = −
∫
Γ(t)

JBK · νwRH(v)︸ ︷︷ ︸
:=(g̃,w)HΓ(t)

+

2∑
i=1

∫
Ωi(t)

wivi + 2[Bi −w] · [∇RH(v)]wi +∇ · [Bi −w]RH(v)wi︸ ︷︷ ︸
:=(f̃ ,w)H(t)

, ∀w ∈ V (t). (5.23)

This solution exists by Thm. 2.16. We seek to show that first L(v) ∈ Z1(t) and then that RH(v) = L(v).
By use of Theorem 1 in [37], since f̃ ∈ H(t) and g̃ ∈ H1/2(Γ(t)), the solution to (5.23) is indeed in Z1(t)
since the data (Ai,Bi, Ci) is regular enough and moreover:

∥L(v)∥Z1(t) ≤ c(∥v∥VΓ(t) + ∥RH(v)∥V (t)) ≤ c∥v∥H(t)

To show RH(v) = L(v), subtracting (5.23) from (5.22):

aκ(t;RH(v)− L(v), w) = 0.

Testing with w = RH(v)− L(v) and using coercivity yields RH(v) = L(v) and hence, we have:

∥RH(v)∥Z1(t) ≤ c∥v∥H(t), (5.24)

where the regularity constant c can be taken to be bounded on [0, T ] via the regularity of the flow.
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The same argument follows for RHΓ with

(f̃ , w)H(t) =

2∑
i=1

∫
Ωi(t)

2[Bi −w] · [∇RHΓ
(v)]wi +∇ · [Bi −w]RH(v)wi

(g̃, w)HΓ(t) =

∫
Γ(t)

wv − JBK · νwRHΓ(v). □

Lemma 5.7. On top of the assumptions made in Lem. 5.6, assume Ai ∈ C2(Qi;Rd×d). For w ∈ Zk(t),
η := w − πhw and v ∈ Z1(t) it holds that

|b(t; η, v)| ≤ c(∥η∥H(t) + h∥η∥V (t) + hk+1∥w∥Zk(t))∥v∥Z1(t). (5.25)

Proof. We begin with the following estimate of the bilinear form b(t; ·, ·), (2.11), for η := w − πhw:

|b(t; η, v)| ≤ c∥η∥H(t)∥v∥H(t) +

∣∣∣∣ 2∑
i=1

∫
Ωi(t)

DB
i (w,Bi, ηi, vi) +DA

i (w,Ai, ηi, vi)

∣∣∣∣.
For DA

i , integrating by parts yields:∣∣∣∣∣
2∑

i=1

∫
Ωi(t)

DA
i (w,Ai, ηi, vi)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Γ(t)

J(∂•t Ai +∇ · wAi − 2D(wi,Ai))∇v · νΓKη

∣∣∣∣∣+
∣∣∣∣∣

2∑
i=1

ηi∇ · ((∂•t Ai +∇ · wAi − 2D(wi,Ai))∇vi)

∣∣∣∣∣
≤ c

(
|Ai|C2(Qi;R), |∇w|C1(Ω;Rd)

)
(∥η∥H(t) + ∥η∥V∗

Γ(t)
)∥v∥Z1(t).

In the last line we have used both the generalised trace inequality, see [41, Sec. 2.5], and the Banach
triple identification for the boundary terms. Similarly for DB

i :∣∣∣∣ 2∑
i=1

∫
Ωi(t)

DB
i (w,Bi, ηi, vi)

∣∣∣∣ ≤ c
(
|Bi|C1(Qi;Rd), |∇ ·w|C1(Ω;Rd)

)
(∥η∥H(t) + ∥η∥V∗

Γ(t)
)∥v∥Z1(t).

Combining the previous three estimates we see

|b(t; η, v)| ≤ c
(
∥η∥H(t) + ∥η∥V∗

Γ(t)

)
∥v∥Z1(t). (5.26)

In order to complete the proof, we employ the same duality argument as in [16, 22] to estimate the dual
norm of η. Set T : HΓ(t) → VΓ(t) as:

(T ζ, v)VΓ(t) := ⟨ζ, v⟩VΓ(t) = (ζ, v)HΓ(t) for all ζ, v ∈ VΓ(t),

i.e T acts a Riesz map mapping to the element in VΓ(t) that corresponds to the functionals in HΓ(t) ⊂
V∗
Γ(t). Notice that:

∥T ζ∥2VΓ(t)
= ∥ζ∥2V∗

Γ(t)
=

∫
Γ(t)

ζT ζ,

for any ζ ∈ HΓ(t). We note that substituting v = T (ζ) in (5.19) gives:

∥RHΓ
(T ζ)∥Z1(t) ≤ c∥T (ζ)∥VΓ(t) = c∥ζ∥V∗

Γ(t)
= c(ζ, T ζ)1/2HΓ(t)

. (5.27)
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By construction:

∥η∥2V∗
Γ(t)

=

∫
Γ(t)

η · T η = aκ(t; η,RHΓ
(T η))

= aκ(t; η,RHΓ
(T η)− I l[RHΓ

(T η)]) + aκ(t; η, I
l[RHΓ

(T η)]).

Then, for the first part, we have:

|aκ(t; η,RHΓ
(T η)− I l[RHΓ

(T η)])| ≤ ∥η∥V (t)∥RHΓ
(T η)− I l[RHΓ

(T η)]∥V (t)

≤ ch∥η∥V (t)∥RHΓ(T η)∥Z1(t) ≤ ch∥η∥V (t)∥η∥V∗
Γ(t)

.

For the second part, using the definition of the Ritz projection (5.8), we have

|aκ(t; η, I l[RHΓ
(T η)])|

= |aκ(t;πhw, I l[RHΓ(T η)])− ahκ(Π
hw, Ih[RHΓ(T η)])|

≤ |aκ(t;πhw − w, I l[RHΓ(T η)])− ahκ(t; Π
hw − w−l, Ih[RHΓ

(T η)])|

+ |aκ(t;w, I l[RHΓ
(T η)]−RHΓ

(T η))− ahκ(t;w
−l, Ih[RHΓ

(T η)−l]−RHΓ
(T η)−l)|,

+ |aκ(t;w,RHΓ
(T η))− ahκ(t;w

−l,RHΓ
(T η)−l)|

≤ chk+1∥w∥Z1(t)∥RHΓ
(T η)∥V (t) + chk+1∥w∥V (t)∥η∥V∗

Γ(t)
+ chk+1∥w∥Z1(t)∥η∥V∗

Γ(t)

≤ chk+1∥w∥Z1(t)∥η∥V∗
Γ(t)

,

using Lem. 3.10 and 5.8, the regularity estimate, (5.27), and (P1), (P4) and (P4’). Hence, we infer that

∥η∥V∗
Γ(t)

≤ ch∥η∥V (t) + chk+1∥w∥Z1(t).

Substituting the final inequality here in (5.26) yields (5.25). □

Lemma 5.8 ([22], Lem. 3.8 and 3.10). For w ∈ C1
Zk

, if (P1) to (P9), Lem. 3.10 and 5.6 and (5.25) hold,
there exists c > 0 (independent of h) such that:

∥∂ht Πhw∥V h(t) ≤ c(∥w∥V (t) + ∥∂•tw∥V (t)),

∥w − πhw∥H(t) + h∥w − πhw∥V (t) ≤ chk+1∥w∥Zk(t),

∥∂lt(w − πhw)∥H(t) + h∥∂lt(w − πhw)∥V (t) ≤ chk+1(∥w∥Zk(t) + ∥∂•tw∥Zk(t)).

Lemma 5.9. The error estimates described in Lem. 5.8 also hold for a.e t ∈ I for w ∈W (Zk, Zk).

Proof. Via Lem. 2.7, C1
Zk

is dense withinW (Zk, Zk). For a w ∈W (Zk, Zk), take a sequence wϵ ∈ C1
Zk

such

that wϵ → w inW (Zk, Zk). This implies ∥wϵ∥Zk(t) → ∥w∥Zk(t), ∥∂•twϵ∥Zk(t) → ∥∂•tw∥Zk(t), ∥πhwϵ∥V (t) →
∥πhw∥V (t), ∥∂ltπhwϵ∥V (t) → ∥∂ltπhw∥V (t) and ∥∂ht Πhwϵ∥V h(t) → ∥∂ht Πhw∥V h(t) (by continuity of Πh and

πl, see Rem. 5.5) in L2(I). We will only show the first inequality, but the same method can be used to
obtained the two remaining ones. For arbitrary δ > 0, there exists an ϵ∗ > 0 such that when ϵ > ϵ∗, we
have: ∫

I

(
∥∂ht Πh(w)∥V h(t) − ∥∂ht Πh(wϵ)∥V h(t)

)2
dt ≤ δ2,∫

I

(
∥∂•tw∥V (t) − ∥∂•twϵ∥V (t)

)2
dt ≤ δ2,∫

I

(
∥w∥V (t) − ∥wϵ∥V (t)

)2
dt ≤ δ2.
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We fix an arbitrary t ∈ I and by taking the mean integral in [t− s, t+ s], s > 0 (reflecting the functions
for t < 0, i.e v(t) = v(−t)), we see:

1

2s

∫ t+s

t−s

∥∂ht Πh(w)∥V h(τ) dτ ≤ 1

2s

∫ t+s

t−s

∣∣∥∂ht Πh(w)∥V h(τ) − ∥∂ht Πh(wϵ)∥V h(τ)

∣∣+ ∥∂ht Πh(wϵ)∥V h(τ) dτ.

(5.28)

We note that via Young’s inequality, (5.28) can be bounded by:

1

2s

∫ t+s

t−s

∣∣∥∂ht Πh(w)∥V h(τ) − ∥∂ht Πh(wϵ)∥V h(τ)

∣∣ dτ
≤ s−1/2

(∫
I

(
∥∂ht Πh(w)∥V h(t) − ∥∂ht Πh(wϵ)∥V h(t)

)2
dτ

)1/2

≤ δs−1/2.

Whereas for the second term, we use the bounds given by Lem. 5.8 and Hölder’s inequality once more:

1

2s

∫ t+s

t−s

∥∂ht Πh(wϵ)∥V h(τ) dτ ≤ c

2s

∫ t+s

t−s

∥wϵ∥V (τ) + ∥∂•twϵ∥V (τ) dτ

≤ c

2s

∫ t+s

t−s

∥w∥V (τ) + ∥∂•tw∥V (τ) +
∣∣∥wϵ∥V (τ) − ∥w∥V (τ)

∣∣
+
∣∣∥∂•twϵ∥V (τ) − ∥∂•tw∥V (τ)

∣∣ dτ
≤ c

2s

∫ t+s

t−s

∥w∥V (τ) + ∥∂•tw∥V (τ) dτ + 2δ.

Combining both of these estimates and equation (5.28):

1

2s

∫ t+s

t−s

∥∂ht Πh(w)∥V h(τ) dτ ≤ c

2s

∫ t+s

t−s

∥w∥V (τ) + ∥∂•tw∥V (τ) dτ + (2 + s−1/2)δ. (5.29)

Since δ is arbitrary, letting δ = o(s1/2), we see that by the limit as s→ 0, via the Lebesgue differentiation
theorem, both sides of equation (5.29) converge to their point-wise values a.e, hence we obtain that for
all t ∈ I:

∥∂ht Πh(w)∥V h(t) ≤ c(∥w∥V (t) + ∥∂•tw∥V (t))

where the constant c is the same as the constant in its equivalent estimate in Lem. 5.8 (and hence
independent of both h and t). □

5.3. Proof of error bound.

Proof of Thm. 5.1. We have an additional right-hand side functional term that is not present in the
original proof by Elliott and Ranner. This requires a modification of the proof of [22, Thm. 3.11].

To begin, we slightly modify the problem. For a test function v ∈ W (V,H), we can rewrite the weak
formulation of our problem as:

d

dt
m(t;u, v)−m(t;u, ∂•t v) + a(t;u, v) = l(t; v).

Employing the standard parabolic rescaling ǔ = e−κtu where κ is chosen as in the definition of the Ritz
projection, the problem becomes:

d

dt
m(t; ǔ, v)−m(t; ǔ, ∂•t v) + aκ(t; ǔ, v) = e−κtl(v)︸ ︷︷ ︸

=:l̃(v)

. (5.30)
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Performing the same transformation to the discrete analogue: define Ǔh = e−κtUh which satisfies

d

dt
mh(t; Ǔh, vh)−mh(t; Ǔ , ∂ht v

h) + ahκ(t; Ǔ
h, vh) = e−κtlh(vh)︸ ︷︷ ︸

=:ľh(vh)

. (5.31)

Set θ := Ǔ −Πhǔ, then using (5.30) and using the fact that lh(t; ·) equals l(t; (·)l) for functions in Hh(t),
for arbitrary vh ∈W (Sh,Sh), we arrive at:

d

dt
mh(t; Πhǔ, vh) + ahκ(t; Π

hǔ, vh)−mh(t; Πhǔ, ∂ht v
h)− l̃h(vh),

=
d

dt
mh(t; Πhǔ, vh) + aκ(t; ǔ, v

h,l)−mh(t; Πhǔ, ∂ht v
h)− l̃h(vh),

=
d

dt

[
mh(t; Πhǔ, vh)−m(t; ǔ, vh,l)

]
−
[
mh(t; Πhǔ, ∂ht v

h)−m(t; ǔ, ∂•t v
h,l)

]
,

= mh(t; ∂ht Π
hǔ, vh)−m(t; ∂ltǔ, v

h,l) + λh(t; Πhǔ, vh,l)− λl(t; ǔ, vh,l) +m(t; ǔ, ∂•t v
h,l − ∂ltv

h,l).

Now subtracting this equation from (5.31), and rearranging yields:

d

dt
mh(t; θ, vh) + ahκ(t; θ, v

h)−mh(t; θ, ∂ht v
h) (5.32)

= −
[
mh(t; ∂ht Π

hǔ, vh)−m(t; ∂ltπ
hǔ, vh,l) +m(t; ∂lt[π

hǔ− ǔ], vh,l) + λh(t; Πhǔ, vh,l)− λl(t;πhǔ, vh,l)

+ λl(t; [πhǔ− ǔ], vh,l) +m(t; ǔ, ∂•t v
h,l − ∂ltv

h,l)

]
=: −Ξh(ǔ, vh).

Using the identity ∂lt(v
l,h) = (∂ht v

h)l and looking at Ξh(·, ·) term by term, we see, for example:

|mh(t; ∂ht Π
hǔ, vh)−m(t; ∂ltπ

hǔ, vh,l)|

= |mh(t; ∂ht Π
hǔ, vh)−m(t; (∂ht Π

hǔ)l, vh,l) +m(t; (∂ht Π
hǔ)l − ∂ltπ

hǔ, vh,l)|,

≤ chk+1(∥ǔ∥Zk(t) + ∥∂•t ǔ∥Zk(t))∥v
h∥V h(t),

by (P1) and Lem. 5.9. Similar rearrangement and the use of Lem. 3.10 with (P2), (P3) ,(P8) yields:

|Ξh(ǔ, vh)| ≤ chk+1(∥ǔ∥Zk(t) + ∥∂•t ǔ∥Zk(t))∥v
h∥V h(t).

Using (5.32) and substituting vh = θ, we obtain:

d

dt
mh(t; θ, θ) + ahκ(t; θ, θ)−mh(t; θ, ∂ht θ) = Ξh(θ, θ).

Using the transport formula and the bound on Ξh:

1

2

d

dt
mh(t; θ, θ) + ahκ(t; θ, θ) ≤ −1

2
λh(t; θ, θ) + chk+1(∥ǔ∥Zk(t) + ∥∂•t ǔ∥Zk(t))∥θ∥V h(t).

Integrating over time and using Young’s and Grönwall’s inequality:

sup
t∈I

∥θ∥2Hh(t) +

∫ T

0

∥θ∥2V h(t) ≤ c∥θ∥2Hh(0) + c

∫ T

0

∥θ∥2Hh(t) + ch2k+2

∫ T

0

(∥ǔ∥2Zk(t)
+ ∥∂•t ǔ∥2Zk(t)

).

Finally, using the decomposition:

ǔ− Ǔh,l = ǔ− πhǔ+ πhǔ− Ǔh,l.
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Using the previous bound, the fact that the lift is a diffeomorphism and the bound on the Ritz map, we
finally obtain:

sup
t∈I

∥ǔ− Ǔh,l∥2H(t) + h2
∫ T

0

∥ǔ− Ǔh,l∥2V (s) ds = sup
t∈I

∥ǔ− πhǔ+ θl∥2H(t) + h2
∫ T

0

∥ǔ− πhǔ+ θl∥2V (s) ds,

≤ c∥u0 − uh,l0 ∥H(0) + h2k+2c(Cu).

Undoing the scaling u = eκtǔ gives us the desired error bound. □

6. Numerical results

All numerical results are computed using the firedrake package [7, 8, 15, 44]. Simulation code is available
in [43]. Results are computed on a sequence of meshes generated using GMSH [25] rather than successive
refinement of a single mesh.

The main challenges in implementing the numerical scheme are:

(1) Computing the initial geometry: We start with a piecewise linear geometry given by GMSH. The
initial isoparametric domain is computed through an explicit parametrisation applying directly
the method from Sec. 3 efficiently using custom written C code. The evolution of the mesh is
carried out simply by moving the initial Lagrange nodes according to the smooth, given velocity
field.

(2) Labelling and tracking different parts of the domain: Along side the geometry and topology of
the mesh we must track labels which say which elements are in domain Ωh

1 (t) or Ω
h
2 (t) and which

facets are on Γh(t). Once this is fixed for the initial domains Ω̃h
1 and Ω̃h

2 , this information is
passed between different times. GMSH provides physical tags to each element and facets which
can be used to identify the different domains.

Efficient and accurate quadrature rules are used to perform element-wise integrals. Note that system
matrices must be reassembled at each time step due to the evolution of the domain.

6.1. Time discretisation of advection-diffusion problem. We start from the spatial discretisation
from Sec. 4. We will apply a backward difference formula (BDF) time discretisation of order q, see [35]
for more including analysis of a similar surface only problem. We take a partition of the time interval
0 = t0 < t1 < · · · < tM = T . For simplicity we assume that each time interval is of the same length:
τ := tj − tj−1 for j = 1, 2, . . . ,M .

We use temporal interpolations of each domain at each time step to construct a sequence of triangulations
J h(tj) each equipped with finite element spaces Sh(tj) for j = 0, 1, . . . ,M . We define the discrete velocity
W j ∈ Sh(tj)

d by

W j =
1

τ

q∑
l=0

δlX
j−l, (6.1)

where Xj are the positions of the Lagrange nodes of the triangulation at time tj and {δl}ql=0 are the
backward difference formula weights of order q, determined from the relation:

δ(ζ) =

q∑
l=0

δlζ
q =

q∑
l=1

1

l
(1− ζ)l. (6.2)

The fully discrete problem is the time discretisation (4.2): Given starting values U0 ∈ Sh(t0), . . .,
Uq−1 ∈ Sh(tq−1), and data A,B, C and lh, for j = q, . . . ,M , we wish to find U j ∈ Sh(tj) as the solution
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of

1

τ

q∑
l=0

δlm
h(tj−l;U j−l, χj−l

i )+ ah(tj ;U j , χj)) = lh(t
j ;χi

j) for all basis function χj
i ∈ Sh(tj), (6.3)

where again δl are the BDF weights (6.2). Note that the first term on the left hand side is computed
by summing over q different meshes to approximate the time derivative. Let Uh(tj) := U j and let
eh(t) := u−Uh,l(t), then we assume that a similar estimate as in [35, Thm. 5.3] and [17, Thm. 2.4] holds
towards the BDF scheme (6.3) in supplement to Thm. 5.1:

∥eh(tn)∥2L2(Ω) + h2τ

n∑
k=1

∥∇eh(tk)∥2L2(Ω) ≤ c(τ2q + h2k+2). (6.4)

Remark 6.1. We recall that on the space V (t), both the norms ∥ · ∥L2(Ω) and ∥ · ∥H(t) are equivalent.
Moreover, we expect the methods in [35] and in [17] are generalisable in our case in order to prove (6.4).

6.2. Numerical examples of advection-diffusion problem. For d = 2, 3, let Ω = [−1, 1]d, for
t ∈ [0, T ], we define the evolution of the domain through the flow map Φt given by:

Φt(x) = x+
|x|1/3

∏d
i=1(1− x2i )

0.5
∏d

i=1(1− 4x2i /|x|)

{
((α(t)− 1)x1, (β(t)− 1)x2) if d = 2,

((α(t)− 1)x1, (β(t)− 1)x2, 0) if d = 3,

for α(t) = 1 + 0.25 sin(t) and β = 1 + 0.25 cos(t). This is a special motion which ensures that notes
initially on ∂Ω do not move and the surface Γ(t) is described by the level set function ϕ(·, t) given by

ϕ(·, t) =

{
x2
1

α(t)2 +
x2
2

β(t)2 − 1
2 if d = 2

x2
1

α(t)2 +
x2
2

β(t)2 + x23 − 1
2 if d = 3.

We define Ω1(t) as the interior of Γ(t) and Ω2(t) = Ω \ Ω1(t).

We set the coefficients in the equation to beA1 = 10Id, A2 = Id, B1 = 5∇x1, B2 = −5∇x1, C1 = 1,
C2 = 10 and note that they jump across the interface. We set the right hand side data such that the
exact solution u is given by

u(x, t) = sin(t)|Φ(x)|
d∏

i=1

sin(2πxi).

This exact solution is globally continuous, smooth in each domain but is not differentiable across the
interface. In order to simplify the implementation the right hand side data (lh) is computed by taking
interpolations of smooth data. We compute using isoparametric elements of order 1, 2, 3 on a sequence
of given meshes. For order k discretisation in space we use BDF order k+1 in time. The initial solution
U0 = 0 matches the exact solution at t = 0. The other starting values are computed using lower order
BDF methods. For elements of order k we expect convergence of order k + 1 for the error at the final
time, u(T ) − UM , in the L2(Ω) norm and order k is the H1(Ω) semi-norm. The results are shown in
Fig. 6.1 for the cases d = 2, 3 respectively. The precise numerical values are shown in Tab. 6.1. We see
that the numerical results support the analytical convergence results.

Author contributions

Conceptualization, investigation, formal analysis, writing: All. Software: TR. Supervision: CME.Writing
(first draft): PS.
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h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

1.00000 1.00000 3.51296× 10−1 3.30187 — —
6.66667× 10−1 5.00000× 10−1 9.51874× 10−1 4.43031 -2.458416 -0.725039
4.37747× 10−1 2.50000× 10−1 1.99238× 10−1 2.33192 3.717892 1.525683
2.40008× 10−1 1.25000× 10−1 9.02047× 10−2 1.44891 1.318576 0.791859
1.34513× 10−1 6.25000× 10−2 2.78846× 10−2 7.80431× 10−1 2.027605 1.068576

(a) Order 1, d = 2

h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

1.00000 1.00000 3.05166× 10−1 3.29594 — —
6.66667× 10−1 5.00000× 10−1 2.14128× 10−1 2.03484 0.873768 1.189433
4.37747× 10−1 2.50000× 10−1 3.93009× 10−2 8.61571× 10−1 4.030255 2.043065
2.40008× 10−1 1.25000× 10−1 6.51346× 10−3 2.89276× 10−1 2.990807 1.816030
1.34513× 10−1 6.25000× 10−2 9.24067× 10−4 8.43187× 10−2 3.372712 2.129106

(b) Order 2, d = 2

h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

1.00000 1.00000 1.87468× 10−1 2.57196 — —
6.66667× 10−1 5.00000× 10−1 7.90234× 10−2 8.93941× 10−1 2.130551 2.606354
4.37747× 10−1 2.50000× 10−1 7.35252× 10−3 1.97059× 10−1 5.645317 3.594764
2.40008× 10−1 1.25000× 10−1 5.83518× 10−4 4.39236× 10−2 4.216077 2.497725
1.34513× 10−1 6.25000× 10−2 5.75918× 10−5 2.73132× 10−2 3.999388 0.820506

(c) Order 3, d = 2

h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

1.25000 1.00000 6.90651× 10−1 8.44875 — —
8.66599× 10−1 5.00000× 10−1 6.57464× 10−1 7.69389 0.134429 0.255490
6.31590× 10−1 2.50000× 10−1 5.72385× 10−1 6.68398 0.438071 0.444822
3.33531× 10−1 1.25000× 10−1 3.05710× 10−1 4.43667 0.982256 0.641827
1.75870× 10−1 6.25000× 10−2 9.68233× 10−2 2.34095 1.796513 0.998992

(d) Order 1, d = 3

h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

8.66599× 10−1 5.00000× 10−1 3.78772× 10−1 5.39342 — —
6.31590× 10−1 2.50000× 10−1 1.59518× 10−1 2.89154 2.733729 1.970655
3.33531× 10−1 1.25000× 10−1 2.14372× 10−2 9.12177× 10−1 3.143326 1.806895
1.75870× 10−1 6.25000× 10−2 2.84564× 10−3 2.57151× 10−1 3.155269 1.978425

(e) Order 2, d = 3

h τ L2 error H1 error eoc(L2 error) eoc(H1 error)

1.25000 1.00000 3.19819× 10−1 4.78209 — —
8.66599× 10−1 5.00000× 10−1 1.27429× 10−1 2.73209 2.511984 1.528193
6.31590× 10−1 2.50000× 10−1 3.16946× 10−2 9.05805× 10−1 4.398523 3.489946
3.33531× 10−1 1.25000× 10−1 2.44323× 10−3 1.41707× 10−1 4.013792 2.905320
1.75870× 10−1 6.25000× 10−2 1.70045× 10−4 2.10221× 10−2 4.164150 2.981596

(f) Order 3, d = 3

Table 6.1. Results for advection-diffusion problem for d = 2, 3.
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Figure 6.1. L2 error for advection-diffusion problem for d = 2 (top) and d = 3 (bot-
tom).

Appendix A. Proof of Regularity

In this section, we will show some results on the additional regularity of the smooth solution to (4.2).

Lemma A.1 (The Trace Map). There exists a bounded and continuous linear operator τ̃(·) : L
2
V → L2

VΓ

such that τ̃tφ(t) = τtφ(t) ∀φ ∈ CV , where τt : V (t) → VΓ(t) is the classical trace map.

Proof. Let τt : V (t) → VΓ(t) be the classical trace map. It is proven in [6] that the following identity:
τt(ϕtw0) = ϕt(τ0w0) holds for all t ∈ I and w0 ∈ V (0). Moreover, there exists a c independent of time
such that:

∥τt(ϕtw0)∥HΓ(t) ≤ c∥ϕtw0∥VΓ(t).

Now, formally define τ̃(·) as:

τ̃(·)v(·) = ϕ(·)τ0(ϕ−(·)v(·)).
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Then via Lem. 2.2, ϕ−(·)v(·) ∈ L2(I;V (0)) and since τ0 can also furthermore be uniquely identified

as a linear map τ0 : L2(I;V (0)) → L2(I;VΓ(0)), see [31, Thm. 1.2.4], finally the push-forward ϕt :
L2(I;VΓ(0)) → L2

VΓ
maps back into the evolving space. Note that this map, by compatibility and it’s

time independent bound is also bounded. Finally, if φ ∈ CV , then, at time t ∈ I:

τ̃tφ(t) = ϕtτ0(ϕ−tφ(t)) = τtφ(t).□

This allows us to formally identify the following pairing:∫ T

0

⟨g, v⟩VΓ(t) :=

∫ T

0

⟨g, τ̃tv⟩VΓ(t), (g, v) ∈ L2
V∗

Γ
× L2

V .

Lemma A.2. Under the assumptions of A4 Thm. 2.16, for each g ∈ L2
VΓ

, there exists a unique solution

ug ∈ L2
Z1

to:

2∑
i=1

∫ T

0

∫
Ωi(t)

Ai(t;x)∇ug · ∇v =

∫ T

0

∫
Γ(t)

gv for all v ∈ L2
V . (A.1)

Proof. It follows from the regularity assumptions on the flow Φt that the pair (Z1(t), ϕt|Z1(t))|t∈I is

compatible. For g ∈ L2
VΓ

, we can take a subset I ′ ⊂ I of full measure such that g(t) ∈ VΓ(t) and
∥g(t)∥VΓ(t) <∞, for t ∈ I ′. Indeed via Lem. 2.2, we can take the set of Lebesgue points of g̃(·) = ϕ−(·)g(·)
to be I ′ and push the function forwards, g(t) = ϕtg̃(t) ∈ VΓ(t) for all t ∈ I ′. Moreover, we see that, for
t ∈ I ′, these remain Lebesgue Points of ∥g(·)∥VΓ(·) in L2(I), indeed, via the reverse triangle inequality
and compatibility:

1

2δ

∫ t+δ

t−δ

|∥g∥VΓ(s) − ∥g∥VΓ(t)|
2 ds ≤ c

2δ

∫ t+δ

t−δ

|∥g̃(s)∥VΓ(0) − ∥g̃(t)∥VΓ(0)|
2 ds

≤ c

2δ

∫ t+δ

t−δ

∥g̃(s)− g̃(t)∥2VΓ(0)
ds

Fix t ∈ I ′, set utg ∈ V (t) to be the solution to:

2∑
i=1

∫
Ωi(t)

A(t;x)∇utg · ∇v =

∫
Γ(t)

gv ∀ v ∈ V (t). (A.2)

We will drop the distinction between I ′ and I and just say for almost all t ∈ I, then via the Hilbert triple
structure outlined in Sec. 2.3, g(t) ∈ VΓ(t) ⊂ HΓ(t) ⊂ V∗

Γ(t). By [37, Thm. 1] we have that for almost all
t ∈ I there exists a unique solution utg(·) ∈ Z1(t) to (A.2).

Set ug(t; ·) := utg(·), we show that this solution is in-fact in L2
Z1
. We will proceed as follows:

(1) First show that ug ∈ L2
V . By [4, Lem. 2.14], it suffices to show first that t → (ug, w)V (t) is

measurable for all w ∈ L2
V and then that ∥ug∥L2

V
<∞.

(2) We then reuse this method, showing that t → (ug, w)Z1(t) is measurable for all w ∈ L2
Z1

and

∥ug∥L2
Z1
<∞, and hence ug ∈ L2

Z1
.

(3) Finally, we show that ug does indeed solve (A.1).

To show the measurability, since the eigenvalues of Ai(t;x) are bounded from both below and above inde-
pendent of time, we can induce the equivalent inner product (u, v)Ṽ (t) := (A(t;x)∇u,∇v)H(t). Showing
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measurability then follows as:

(ug, v)Ṽ (t) =

2∑
i=1

∫
Ωi(t)

Ai(t;x)∇ug · ∇v =

∫
Γ(t)

gv =

∫
Γ(t)

⟨g, v⟩VΓ(t),

and since (v, g) ∈ L2
V × L2

V∗
Γ
, by [4, Lem. 2.14], the map t 7→ ⟨g, v⟩VΓ(t) is measurable and hence so is

(ug, v)Ṽ (t). For the uniform bound, testing the differential equation (A.2) with v = ug and integrating in

time, we have:

∥ug∥2L2
V
≤ C(γ)∥g∥2L2

V∗
Γ

,

via Young’s and Poincaré’s inequalities, so ug ∈ L2
V . Before moving on, note that for any fixed t ∈ I,

since ug(t; ·) ∈ Z1(t), we can integrate by parts (A.2), obtaining:∫
Γ(t)

s
A(t;x)∇u · νΓ

{
v −

2∑
i=1

∫
Ωi(t)

∇ · (Ai(t;x)∇ug)v =

∫
Γ(t)

gv, (A.3)

for v ∈ C∞
0 (Ω). For v ∈ C∞

0 (Ω1(t))× C∞
0 (Ω2(t)), we see that (A.3) yields:

2∑
i=1

∫
Ωi(t)

∇ · (Ai(t;x)∇ug)v = 0.

Since the space C∞
0 (Ω1(t))× C∞

0 (Ω2(t)) is dense in H(t), we get that:

∇ · (Ai(t;x)∇ug) = 0 a.e. (A.4)

By the Poincaré’s inequality, we can endow Z1(t) with a more convenient equivalent inner product:

(v, w)Z1(t) =

2∑
i=1

∫
Ωi(t)

∆v ·∆w +∇v · ∇w.

Since A(t;x) is assumed to be differentiable, we introduce the equivalent inner product on Z1(t):

(η, v)Z̃1(t)
:=

2∑
i=1

∫
Ωi(t)

∇ · (Ai(t;x)∇ηi)∇ · (Ai(t;x)∇vi) + (∇Ai(t;x)) · ∇ηi(∇Ai(t;x)) · ∇vi +∇ηi · ∇vi.

We will first show the following statement, let ∇2 be the Hessian, then:∫
Ωi(t)

|Ai∇2ηi|2 ≥ γ

∫
Ωi(t)

|∆ηi|2,

where γ > 0 is the coercivity constant in Thm. 2.16. For fixed t ∈ I, sinceAi(t;x) is non-singular and sym-
metric, there exists orthogonal matrices Pi(t;x), PT

i (t;x) and diagonal matrixDi(t;x) = [λk(t;x)δk,l]
n
k,l=1,

the eigenvalues of Ai(t;x) (note that eigenvalues are continuous for a continuous matrix) such that
Ai(t;x) = Pi(t;x)Di(t;x)PT

i (t;x). Doing a change of coordinates, x = Piy and letting η̃i(x) = ηi(Pi(x)),
we see:

Ai(t;x)∇2(ηi(x)) = Di(t;x)∆η̃i(y)|y=PT
i x.
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Hence, since P is orthogonal:∫
Ωi(t)

|Ai(t;x)∇2(ηi(x))|2 dx =

∫
PT

i (Ωi(t))

|Di(t;Pi(y))∆η̃i(y)|2 dy,

≥ min
x∈Ωi(t)

min
k∈[1,n]

λ2k(t;PT
i (x))

∫
PT

i (Ωi(t))

|∆η̃i(y)|2 dy,

≥ γ2
∫
PT (Ωi(t))

|∆η̃i(y)|2 dy = γ2
∫
Ωi(t)

|∆ηi(x)|2 dx.

To show the equivalence of inner products (·, ·)Z̃1(t)
and (·, ·)Z1(t), note:

∥η∥2
Z̃1(t)

=

2∑
i=1

∫
Ωi(t)

|∇ · (Ai(t;x)∇ηi)|2 + |(∇Ai(t;x)) · ∇ηi|2 + |∇ηi|2

=

2∑
i=1

∫
Ωi(t)

|Ai(t;x)∇2ηi|2 + 2Ai(t;x)∇2ηi(∇Ai(t;x)) · ∇ηi + 2|(∇Ai(t;x)) · ∇ηi|2 + |∇ηi|2

≥
2∑

i=1

∫
Ωi(t)

1
2 |Ai(t;x)∇2ηi|2 + |∇ηi|2 ≥ min

{
1
2γ

2, 1
}
∥η∥2Z1(t)

and:

∥η∥2
Z̃1(t)

≤ c
[
|Ai|C1(Ωi(t))

]
(∥∇2ηi∥2H(t) + ∥∇ηi∥2H(t)) ≤ c∥η∥2Z1(t)

.

Hence, (·, ·)Z̃1(t)
and (·, ·)Z(t) are equivalent. Substituting η = ug in the new inner product, using (A.4),

we arrive at:

(ug, v)Z̃1(t)
=

2∑
i=1

∫
Ωi(t)

(∇Ai(t;x)) · ∇ui(∇Ai(t;x)) · ∇vi +∇ui · ∇vi.

Since we already know that ug ∈ L2
V , both ((∇A(t;x)) · ∇u, (∇A(t;x)) · ∇v)H(t) and (∇u,∇v)H(t) are

measurable and hence the map t → (ug, v)Z̃1(t)
is measurable for all v ∈ Z1(t). For the bound, [37,

Thm. 1] gives us a constant Ct (that depends on time) such that:

∥ug∥Z1(t) ≤ Ct∥g∥VΓ(t).

Using a similar method as Lem. 2.12 and changing the variables, it follows that there exists CT > Ct,
CT <∞. Hence: ∫ T

0

∥ug∥2Z1(t)
≤ C2

T

∫ T

0

∥g∥2VΓ(t)
<∞.

Hence ug ∈ L2
Z1
.

Finally, we have a solution to ug ∈ L2
Z1

solving (A.2) a.e in time. Since a function v ∈ L2
V satisfies

v(t) ∈ V (t) a.e in time, testing with such a v(t) and integrating both sides of (A.2) yields the desired
solution. Uniqueness follows via coercivity. □

Lemma A.3. Under the assumption A4 from Thm. 2.16, the solution of (A.1) posses a weak material
derivative ∂•t ug ∈ L2

V and satisfies the estimate:

∥ug∥2W (Z1,V ) ≤ c∥g∥2W (VΓ,V∗
Γ)
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Proof. We use the same method as in the proof of Lem. 5.4. Let:

k(t; v, w) :=

2∑
i=1

∫
Ωi(t)

Ai(t;x)∇v · ∇w

then we see, going back to (A.2), we see that ug solves:

k(t;ug, w) = (g, w)HΓ(t),

a.e for all w ∈ L2
V (as before, we can take a subset of I of full measure such that w(t) ∈ V (t), moreover, via

the classical trace theorem, we can identify w(t) ∈ HΓ(t) by (g, w)HΓ(t) = (g, τtw)HΓ(t)). The derivative

of k(t; ·, ·), k̇(t; ·, ·), can be explicitly calculated to be:

d

dt
k(t;w, v) = k̇(t;w, v) + k(t; ∂•tw, v) + k(t;w, ∂•t v), ∀v, w ∈W (V, V ), (A.5)

where

k̇(t;w, v) =

2∑
i=1

∫
Ωi(t)

DA
i (w,Ai, wi, vi),

and DA
i was defined in (2.12). We set ũg to be the solution to:∫ T

0

k(t; ũg, η) dt =

∫ T

0

λΓ(t; g, η)− k̇(t;ug, η) + ⟨∂•t g, η⟩VΓ(t) dt ∀η ∈ L2
V . (A.6)

The material derivative taken on the function ∂•t g is the one with the triple L2
VΓ

⊂ L2
HΓ

⊂ L2
V ∗
Γ
and the

bilinear form λΓ is the corresponding form from Def. 2.3 satisfing the equation:

d

dt
(v, w)HΓ(t) = ⟨∂•t v, w⟩VΓ(t) + ⟨∂•tw, v⟩VΓ(t) + λΓ(t; v, w).

See [5, Sec. 5.4] for an explicit form of λΓ(t; ·, ·). Using the same method as the proof of Lem. A.2, we
have that if ∂•t g ∈ L2

V∗
Γ
, there exists a unique ũg ∈ L2

V solving equation (A.6).

Let ug be the solution of (A.2). Via isomorphism, ϕ−(·)ũg(·), ϕ−(·)ug(·) ∈ L2(I;V (0)), we pick a Lebesgue
point s∗ ∈ I of ϕ−(·)ug(·) and set

w := ϕt

∫ t

s∗

ϕ−τ ũg(τ) dτ + ϕtϕ−s∗ug(s∗) = ϕt

∫ t

s∗

ϕ−τ ũg(τ) dτ + zs∗ .

Thus w ∈ W (V, V ) and ∂•tw = ũg. We aim to show that w = ug. To do so, note that by definition of

k̇(t; ·, ·) (A.5), testing with η ∈W (V, V ) with η(0) = η(T ) = 0:∫ T

0

k(t; ∂•tw, η) dt =

∫ T

0

−k̇(t;w, η)− k(t;w, ∂•t η) dt. (A.7)

we see from comparing (A.6) and (A.7):

−
∫ T

0

k(t;w, ∂•t η) dt =

∫ T

0

k̇(t;w − ug, η)− (∂•t η, g)HΓ(t) dt, ∀η ∈W (V, V ), η(0) = η(T ) = 0. (A.8)

Comparing (A.8) with (A.2), we infer:∫ T

0

k(t;ug − w, ∂•t η) dt =

∫ T

0

k̇(t;w − ug, η) dt.

Letting η(t) = ψ(t)v(t) where ψ(t) ∈ D(I) and v(t) ∈W (V, V ), we see:∫ T

0

ψ(t)k(t;ug − w, ∂•t v) + ψ′(t)k(t;ug − w, v) dt =

∫ T

0

ψ(t)k̇(t;w − ug, v) dt.
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Since this holds for arbitrary ψ ∈ D(I), then, by use of [33, Lem. 1.2.1], there exists some c ∈ R such
that:

k(t;ug − w, v) =

∫ t

s∗

k̇(τ ;w − ug, v) + k(τ ;w − ug, ∂
•
t v) dτ + c, (A.9)

a.e in time. Note that the right hand side of (A.9) is absolutely continuous in time and hence is the
unique continuous representative of k(t;ug −w, v) (since k(·;ug −w, v) is in L1(I) as a function of time).
It also follows from the fact that k(t; η, v) is continuous for η, v ∈ C0

V that s∗ is also a Lebesgue point of
k(t;ug − w, v) (by use of a standard density argument). Since the continuous representative equals its
Lp counterpart on Lebesgue point (as Lebesgue points are also points of approximate continuity, see [23,
Sec. 1.7]), evaluating both sides of (A.9) at t = s∗, using the definition of w, yields c = 0. Finally we can
test with η(s) = ϕsϕ−t(ug − w) and by use of the same argument as Lem. 5.4 we see that ug = w and
hence ug ∈W (Z1, V ). □

From the previous two lemmas, we can show a time regularity result for (4.2).

Lemma A.4. Under the assumptions A1 to A4 in Thm. 2.16, the solution u to problem (2.8) posses the
additional regularity u ∈W (V,H).

Proof. Let z = u− ug, where u is the weak solution from the problem in (2.8), then:∫ T

0

⟨∂•t z, v⟩V (t) + a(t; z, v) + λ(t; z, v) =

∫ T

0

l̃(t; v),

where:

l̃(t; v) = (f, v)H(t) − (∂•t ug, v)H(t) − λ(t;ug, v)− ([B −w] · ∇ug − [C −∇ ·w]ug, v)H(t).

By the regularity of ug, this is a functional in L2
H , by [4, Thm. 3.13], z ∈ W (V,H) and hence so is

u ∈W (V,H). □
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